Cho tam giác ABC. Phân giác AD. Một điểm P bất kì nằm trên AD. BP,CP cắt AC,AB 2EF. lần lượt tại E,F. EF cắt BC tại K. Chứng minh rằng ∠DAK = 90◦.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔCAD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Ta có: ΔABC cân tại A(gt)
\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy)
mà \(\widehat{ABD}=\frac{\widehat{ABC}}{2}\)(BD là tia phân giác của \(\widehat{ABC}\))
và \(\widehat{ACE}=\frac{\widehat{ACB}}{2}\)(CE là tia phân giác của \(\widehat{ACB}\))
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
AB=AC(ΔABC cân tại A)
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE(g-c-g)
\(\Rightarrow\)BD=CE(hai cạnh tương ứng)