Cho góc xOy=35 độ.Trên tia Ox lấy điểm A, kẻ tia Az nằm trong góc xOy sao cho Az song song với Oy. Gọi tia Om và On lần lượt là phân giác của góc xOyvaf xAz
a. Tính OAz
b. Chứng tỏ Om song song với On
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: OAz^ + xOy^ = 30o + 150o = 180o
Mà OAz^ và xOy^ trong cùng phía
=> zz' // Oy
b) OAz^ + OAz'^ = 180o (kề bù)
OAz'^ = 180o - OAz^ = 180o - 30o = 150o
mà OAn^ = OAz'/2 = 150o/2 = 75o
Mặt khác: xOm^ = xOy^/2= 150o/2 = 75o
Ta có: OAn^ và xOm^ ở vị trí sole trong
=> An // Om
A) cm ZZ'\\OY
vẽ tia a sao cho a\\oy và đi qua OX
ta có aAO+YOA=1800
aAO+1500=1800
aAO=1800-1500
aAO=300
a\\Oy
MÀ aAO=OAZ=300 => aAO VÀ OAZ LÀ 1 => ZZ'\\Oy
B) ta có O1=A1 ( SO LE TRONG)
O=A=1500 => A2=O2=750 ( VÌ SL TRONG VÀ Om, AN là các tia phân giác của góc xOy và OAz')
ta có O1+A2+N=O2+A1+M=1800 => N=M => \(\Delta AON=\Delta AOM\Rightarrow O_2=A_2\Rightarrow OM\backslash\AN\)
a/ta có góc xoy+ góc oaz=30+150=180(ở vị trí trong cùng phía)
do đó AZ//OY ---> ZZ'/OY
b/ta có om là p/g của góc xoy --> góc AOm =75 độ
và on là p/g của góc oaz'--->góc oan=(180-30):2=75
mà hai góc trên ở vị trí so le trong
vậy AN//OM
bài 1:
a) vì góc xAy và góc xBy là hai góc đồng vị (đều =40độ)
suy ra :Ay // Bz
1.
a.Hai góc xBz và xAy là hai góc đồng vị.Nếu \(\widehat{xBz}=40^0\)thì \(\widehat{xBz}=\widehat{xAy}\)nên hai đường thẳng Bz và Ay song song
b. AM,BN lần lượt là tia p/g của góc xAy và xBz nên \(\widehat{xAm}=\frac{1}{2}\widehat{xAy}=20^0,\widehat{xBN}=\frac{1}{2}\widehat{xBz}=20^0\), suy ra \(\widehat{xAM}=\widehat{xBN}\)
Hai góc này ở vị trí đồng vị của hai đường thẳng AM và BN cắt đường thẳng Bx,do đó \(AM//BN\)
2. Câu hỏi của Cao Thi Khanh Chi - Toán lớp 8 - Học toán với OnlineMath
Tham khảo nhé
a)Vì goc xOy+ goc OAz=150+30=180
=>hai góc trong cùng phía
=>zz'//Oy
Cho mình hỏi tí nhap câu hỏi sau đó làm gì nữa?Tại mình mới vào ấy mà
a, Kẻ tia Oy' là tia đối của tia Oy thì \(\widehat{y'OA}+\widehat{AOy}=180^0\) kề bù mà \(\widehat{AOy}=150^0\)nên \(\widehat{AOy'}=30^0\)
=> \(\widehat{AOy'}=\widehat{OAz}=30^0\), do đó : \(Az//Oy'\)hay \(Az//Oy\)
b, Oy // Az' nên z'AO = xOy = 1500 , OM và ON lần lượt là tia phân giác của góc xOy và z'OA, do đó : AOM = OAN = 750 , suy ra OM//AN
a) ta có ˆOAz+ˆAOy=30o+150o=180oOAz^+AOy^=30o+150o=180o
mà chúng ở vị trí 2 góc trong cùng phía do zz, cắt Oy
=> zz,//Oy
b) OM là phân giác của ˆxOyxOy^
⇒ˆxOM=ˆyOM=ˆxOy2=70o⇒xOM^=yOM^=xOy^2=70o
Ta có zz,//Oy
⇒ˆOAz,=ˆAOy⇒OAz,^=AOy^ mà ˆAOy=150o⇒ˆOAz,=150oAOy^=150o⇒OAz,^=150o
AN là phân giác của ˆOAz,OAz,^
⇒ˆNAz,=ˆNAO=ˆOAz,2=70o⇒NAz,^=NAO^=OAz,^2=70o
Ta có ˆNAO=ˆAOM=70oNAO^=AOM^=70o mà chúng ở vị trí so le trong do AO cắt AN và OM
=> AN//OM
cảm ơn