K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

bdt AM-GM là gì vậy bạn?

giải thích hộ mình

1 tháng 5 2020

hình như bn ch học ~ quên ~

bạn lm thế này nha:

Đặt x+1 là a => 4/(x+1) là 4/a mà x > 0 => a;4/a > 0

=> P = \(a+\frac{4}{a}\)

Ta có: \(\left(\sqrt{a}-\frac{2}{\sqrt{a}}\right)^2\ge0\Leftrightarrow a+\frac{4}{a}-\frac{2.\sqrt{a}.2}{\sqrt{a}}\ge0\Leftrightarrow a+\frac{4}{a}\ge4\)

=> P ≥ 4 => ....

4 tháng 10 2021

2x2 - 3x + 10x - 15 - 2x2 - 6x - x + 3 = 3

=> Biểu thức trên không phụ thuộc vào biến x.

5 tháng 10 2021

Hình như kết quả là -12 gì ấy bạn?

a: Ta có: \(A=-x^2+2x+5\)

\(=-\left(x^2-2x-5\right)\)

\(=-\left(x^2-2x+1-6\right)\)

\(=-\left(x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=-x^2-8x+10\)

\(=-\left(x^2+8x-10\right)\)

\(=-\left(x^2+8x+16-26\right)\)

\(=-\left(x+4\right)^2+26\le26\forall x\)

Dấu '=' xảy ra khi x=-4

c: Ta có: \(C=-3x^2+12x+8\)

\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)

\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)

\(=-3\left(x-2\right)^2+20\le20\forall x\)

Dấu '=' xảy ra khi x=2

d: Ta có: \(D=-5x^2+9x-3\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)

e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)

\(=4x+24-x^2-6x\)

\(=-x^2-2x+24\)

\(=-\left(x^2+2x-24\right)\)

\(=-\left(x^2+2x+1-25\right)\)

\(=-\left(x+1\right)^2+25\le25\forall x\)

Dấu '=' xảy ra khi x=-1

f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)

\(=8x-6x^2+20-15x\)

\(=-6x^2-7x+20\)

\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)

\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)

\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Bài 1:

a. $x(x^2-5)=x^3-5x$

b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$

c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$

d.

$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$

 

AH
Akai Haruma
Giáo viên
24 tháng 11 2021

Bài 2:
a.

\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)

b.

\((x-3)^2=x^2-6x+9\)

c.

\((4+3x)^2=9x^2+24x+16\)

d.

\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)

e.

\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)

\(=125x^3+225x^2y+135xy^2+27y^3\)

f.

\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)

23 tháng 12 2021

a.A= \(\frac{7}{2x-3}\) 

Vì 7 thuộc Z nên để x là số nguyên => 7/2x-3 thuộc Z

=> 2x-3 thuộc Ư(7)={1;-1;7;-7}

2x-31-17-7
x215-2

(tm)

Vậy...

b) \(B=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)}{x-1}+\frac{3}{x-1}=2+\frac{3}{x-1}\)

Vì 2 thuộc Z nên để x là số nguyên => 3/x-1 thuộc Z

=> x-1 thuộc Ư(3)={-1;1;-3;3}

x-11-13-3
x204-2
 

 (tm)

Vậy....

c) C=5/x^2-3

Vì 5 thuộc Z nên để x là số nguyên => x^2-3thuộc Z

=> x^2-3 thuộc Ư(5)={1;-1;5;-5}

x^2-31-15-7
x+2căn 2 (k/tm)căn 8 (k/tm)

căn 10 (k/tm)

Vậy x thuộc 2 hoặc -2 

a) 2+3𝑥=−15−19

3x= -15 - 19 -2

3x = -36

x= -12

b) 2𝑥−5=−17+12

2x = -17 + 12 + 5

2x = 0

x = 0

c) 10−𝑥−5=−5−7−11

-x = -5 - 7 - 11 - 10 + 5

-x = -28

x = 28

d) |𝑥|−3=0

|x|= 3

x = \(\pm\)3

e) (7−|𝑥|).(2𝑥−4)=0

th1 : ( 7 - | x| ) = 0

|x|= 7

x=\(\pm\)7

th2: ( 2x-4) = 0

2x = 4

x= 2

f) −10−(𝑥−5)+(3−𝑥)=−8

-10 - x + 5 + 3 - x = -8

-10 + 5 + 3 + 8 = 2x

2x= 6

x = 3

g) 10+3(𝑥−1)=10+6𝑥

10 + 3x - 3 = 10 + 6x

3x - 6x = 10 - 10 + 3

-3x = 3

x= -1

h) (𝑥+1)(𝑥−2)=0

th1: x+1= 0

x = -1

x-2=0

x=2

hok tốt!!!

7 tháng 9 2021

a) \(\sqrt{x}=3\left(x\ge0\right)\Leftrightarrow x=9\)

b) \(\sqrt{x}=\sqrt{5}\left(x\ge0\right)\Leftrightarrow x=5\)

c) \(\sqrt{x}=0\left(x\ge0\right)\Leftrightarrow x=0\)

d) \(\sqrt{x}=-2\left(x\ge0\right)\Leftrightarrow x=\varnothing\)

e) \(\sqrt{x-2}=3\left(x\ge0\right)\Leftrightarrow x-2=9\Leftrightarrow x=11\)

g) \(\sqrt{2x-1}=5\left(x\ge0\right)\Leftrightarrow2x-1=25\Leftrightarrow2x=26\Leftrightarrow x=13\)

h) \(\sqrt{x-3}=0\left(x\ge0\right)\Leftrightarrow x-3=0\Leftrightarrow x=3\)

a: \(\sqrt{x}=3\)

nên x=9

b: \(\sqrt{x}=\sqrt{5}\)

nên x=5

c: \(\sqrt{x}=0\)

nên x=0

d: \(\sqrt{x}=-2\)

nên \(x\in\varnothing\)

e: \(\sqrt{x}-2=3\)

\(\Leftrightarrow\sqrt{x}=5\)

hay x=25

g: \(\sqrt{2x}-1=5\)

\(\Leftrightarrow2x=36\)

hay x=18

h: Ta có: \(\sqrt{x}-3=0\)

nên x=9

24 tháng 11 2021

K hiểu 😐😐😐

24 tháng 11 2021

\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)

\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)

22 tháng 11 2021

\(P=\left(x^2-4x+4\right)+\left(y^2+8y+16\right)+2021\\ P=\left(x-2\right)^2+\left(y+4\right)^2+2021\ge2021\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-4\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

$P(x)=x^2+y^2-4x+8y+2041=(x^2-4x+4)+(y^2+8y+16)+2021$

$=(x-2)^2+(y+4)^2+2021\geq 0+0+2021=2021$

Vậy $P(x)$ min = $2021$ khi $x-2=y+4=0$

$\Leftrightarrow x=2; y=-4$

1 tháng 2 2023

1)(x+1)thuộc ước của -2

ư(2)={1;2;-1;-2}

x+1 1 2 -1 -2
x 0 1 -2 -3

vậy x =0;x=1;x=-2;x=-3

1 tháng 2 2023

2)ta có : 2x+7=2(x+3)+1

2(x+3)chia hết cho x+3

=>để 2x+7chia hết cho x+3

<=>1chia hết cho x+3

=>x+3 thuộc ư(1)

u(1)={1;-1}

x+3 1 -1
2 -2 -4

vậy x=-2;x=-4