Chứng minh rằng vs mọi a,b ta có a^4+b^4>hoặc =a^3b+ab^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
Ta có a4 + b4 - a3 b - ab3 = (a - b)(a3 - b3)
= (a -b)2 (a2 + ab + b2)
= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)
Ta lại có a4 + b4 \(\ge2a^2b^2\)
Từ đó => 2(a4 + b4) \(\ge\)ab3 + a3 b + 2 a2 b2
\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)
\(a^4+b^4\ge2a^3b+2ab^3-2a^2b^2\)
\(\Leftrightarrow\left(a^4-2a^3b+a^2b^2\right)+\left(b^4-2ab^3+a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-ab\right)^2+\left(b^2-ab\right)^2\ge0\) (đúng)
\(\Rightarrow\)Điều phải chứng minh
4 + b 4 ≥ 2a 3b + 2ab 3 − 2a 2b 2
⇔ a 4 − 2a 3b + a 2b 2 + b 4 − 2ab 3 + a 2b 2 ≥ 0
⇔ a 2 − ab 2 + b 2 − ab 2 ≥ 0 (đúng)
⇒Điều phải chứng minh
chúc cậu hok tốt @_@
\(\left[\left(a^2-2a\right).\left(b^2+6b\right)\right]+12\left(a^2-2a\right)+3\left(b^2+6b\right)+36\)(1)
Em đặt: \(A=a^2-2a\)và \(B=b^2+6b\)
(1) Trở thành:
\(AB+12A+3B+36=A\left(B+12\right)+3\left(B+12\right)=\left(A+3\right)\left(B+12\right)\)
\(=\left(a^2-2a+3\right)\left(b^2+6b+12\right)=\left[\left(a-1\right)^2+2\right]\left[\left(b+3\right)^2+3\right]>0\)
Chứng minh:
Biến đổi tương đương, ta có:
\(a^4+b^4\ge a^3b+ab^3\Rightarrow a^4-a^3b+b^4-ab^3\ge0\)
\(\Rightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Rightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Rightarrow\left(a^2-ab+b^2\right)\left(a-b\right)\left(a-b\right)\ge0\Rightarrow\left(a^2-ab+b^2\right)\left(a-b\right)^2\ge0\)
\(\Rightarrow\left(a^2-2a\frac{b}{2}+\left(\frac{b}{2}\right)^2+\frac{3}{4}b^2\right)\left(a-b\right)^2\ge0\)(luôn đúng)
\(\Rightarrow\)đpcm
ủa mà bạn ơi, Hằng đẳng thức a^3-b^3 là (a-b)(a^2+ab+b^2) mà
bạn bị lộn HĐT nên kết quả ra sai r kìa
mik nghĩ v, bạn xem lại nha
Ai giúp giùm tớ tớ cảm mơn huhu!!!
Bài làm
Ta có: a4 + b4 > a3b + ab3
=> a4 + b4 - a3b - ab3 > 0
=> a3( a - b ) + b3( a - b ) > 0
=> ( a3 + b3 )( a - b ) > 0
Ta xét ( a + b )( a2 - ab + b2 )( a - b ) > 0
=> ( a2 - b2 )( a2 - ab + b2 ) > 0
<=> \(\orbr{\begin{cases}a^2-b^2=0\\a^2-ab+b^2=0\end{cases}}\)
chứng minh tích trên lớn hơn 0 nx là ok.