K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

THCFSTXBRHYYYYYYYYYYYYYYYYYY

Bạn kham khảo link này nhé.

Câu hỏi của Đào Gia Khanh - Toán lớp 7 - Học toán với OnlineMath

13 tháng 2 2018

a) theo đl pytago:
AB^2+AC^2=BC^2
=> AC^2=BC^2-AB^2
=>AC^2=144
=>AC=căn 144 = 12cm
Vì BC>AC>AB=>góc A > góc B > góc C

2 tháng 4 2020

Xet tam giac ABC co goc A = 90 do (gt)

Ta co AB^2 + AC^2 = BC^2 (dinh ly Pi-ta-go)

=>AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144

=>AC = can bac 2 cua 144 = 12

Vi BC > AC > AB => goc A > goc B > goc C

Xet tam giac ABC co:

BA = BD (gt)  (1)

goc BAE = goc BDE = 90 do (gt)  (2)

BE (canh chung)  (3)

Tu (1), (2), (3) => tam giac EBA = tam giac EBD (canh huyen-canh goc vuong)

Cau hoi tiep theo tui bo tay.com

26 tháng 12 2017

Xét tam giác ΔAHO và ΔBHO, ta có :

+ \(\widehat{O}\) là góc chung(giả thuyết)

+AH=AB(vì Ot là tia phân giác của góc xOy)

+\(\widehat{AHO}\)=\(\widehat{BHO}\)(giả thuyết)

➩ΔAHO = ΔBHO (c.g.c)(nghĩa là góc.cạnh.góc)

⚠⚠⚠Lưu ý: trường hợp này là góc.cạnh.góc (hoặc là c.g.c) nên theo yêu cầu cần 2 góc và 1 cạnh ; phải đặt đúng theo thứ tự :

Góc đầu tiên;rồi đến cạnh và cuối là góc còn lại

27 tháng 12 2017

ban lam thieu

15 tháng 8 2017

A B C E F D

a)Vì ED//BF;BD//EF

\(\Rightarrow\)FEDB là hình bình hành

\(\Rightarrow\)FB=DE

Mà AE=FB\(\Rightarrow\)AE=DE

\(\Rightarrow\)\(\Delta AED\)là tam giác cân

b)Vì ED//AB\(\Rightarrow\widehat{EDA}=\widehat{BAD}\left(1\right)\)

\(\Delta AED\) là tam giác cân

\(\Rightarrow\widehat{EAD}=\widehat{EDA}\left(2\right)\)

Từ (1) và (2) suy ra AD la phan giac cua goc A

\(\Rightarrow\)

A B C O D 1 2 1 1 3 4

Vì CD // AB (gt)

=> \(\widehat{C_1}=\widehat{B_1}\) (2 góc so le trong)

Xét \(\Delta AOB\)\(\Delta COD\) có:

\(\widehat{C_1}=\widehat{B_1}\) (cmt)

BO = OC (O là trung điểm BC)

\(\widehat{O_1}=\widehat{O_2}\) (2 góc đối đỉnh)

=> \(\Delta AOB\) = \(\Delta COD\) (g.c.g)

b) Vì \(\Delta AOB\) = \(\Delta COD\) (cmt)

=> AO = OD (2 cạnh tương ứng)

Xét \(\Delta AOC\)\(\Delta DOB\) có:

AO = OD (cmt)

\(\widehat{O_3}=\widehat{O_4}\) (2 góc đối đỉnh)

BO = OC (cmt)

=> \(\Delta AOC\) = \(\Delta DOB\) (c.g.c)

=> AC = BD (2 cạnh tương ứng)