K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2015

Gọi số tự nhiên cần tìm là a

a  chia cho 29 dư 5 nghĩa là: A = 29p + 5 ﴾ p ∈ N ﴿

Tương tự: a = 31q + 28 ﴾ q ∈ N ﴿

Nên: 29p + 5 = 31q + 28 => 29﴾p ‐ q﴿ = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29﴾p – q﴿ cũng là số lẻ =>p – q >=1

Theo giả thiết a nhỏ nhất => q nhỏ nhất ﴾a = 31q + 28﴿

=>2q = 29﴾p – q﴿ – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1

=> 2q = 29 – 23 = 6 => q = 3

Vậy số cần tìm là a = 31q + 28 = 31. 3 + 28 = 121

17 tháng 12 2015

\(121\)

5 tháng 2 2018

Gọi số phải tìm là A (A#0) => (A - 5) chia hết cho 29 (A- 5) chia 31 dư 23 ( vì 28-5=23) Khi bớt thương của phép chia (A-5) chia 31 đi 1 đơn vị thì (A-5) sẽ giảm đi 31đơn vị Ta có: 31 chia 29( dư 2). Số lần bớt thương đi là : (29 - 23) : 2 = 3 (lần) Vì số cần tìm nhỏ nhất nên số lần bớt thương sẽ là 3 lần. Vậy số cần tìm là : 31 x 3 + 23 + 5 = 121

18 tháng 12 2017

Gọi số phải tìm là A (A#0)
=> (A - 5) chia hết cho 29 
(A- 5) chia 31 dư 23 ( vì 28-5=23)
Khi bớt thương của phép chia (A-5) chia 31 đi 1 đơn vị thì (A-5) sẽ giảm đi 31đơn vị 
Ta có: 31 chia 29( dư 2).
Số lần bớt thương đi là : (29 - 23) : 2 = 3 (lần)
Vì số cần tìm nhỏ nhất nên số lần bớt thương sẽ là 3 lần.
Vậy số cần tìm là : 31 x 3 + 23 + 5 = 121

22 tháng 1 2021

lopws 6

1 tháng 3 2021

Gọi số tự nhiên nhỏ nhất cần tìm là a

Do a chia 29 dư 5; chia 31 dư 28

=> a = 29.m + 5 = 31.n + 28 (m; n ϵ N)(m; n ∈ N)

=> 29 . m = 31 . n + 23

=> 29.m = 29.n + 2.n + 23

=> 29.m - 29.n = 2.n + 23

=> 29.(m - n) = 2.n + 23

=>2 .n + 23 ⋮ 29 => 2 . n + 23 ⋮ 29

Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất

Mà 2.n + 23 là số lẻ => 2.n + 23 = 29

=> 2.n = 29 - 23

=> 2.n = 6

=> n = 6 : 2 = 3

=> a = 31.3 + 28 = 121

Vậy số nhỏ nhất cần tìm là 121.

1 tháng 3 2021

GIẢI

Gọi số cần tìm là a;

a: 29 dư 5 => a = 29m + 5 (m\(\in\)N)

a: 31 dư 21 => a = 31n + 28 (n\(\in\)N)       (1)

Nên a = 29m + 5 = 31n + 28   => 29(m-n) = 2n + 23

Ta thấy 2n + 23 là số lẻ nên 29(m-n) cũng là số lẻ

=> m - n\(\ge\)1

Theo đề bài a nhỏ nhất, từ (1) suy ra n nhỏ nhất 

                                    =>2n =29(m-n) - 23 (Nhỏ nhất)

                                   =>(m-n) (Nhỏ nhất)

Do đó m - n = 1 => 2n  = 29 - 23 = 6 

                          => n = 3

Vậy số cần tìm là :  a = 31n + 28 = 31.3 + 28 = 121

9 tháng 10 2016

Gọi số tự nhiên cần tìm là A 

Chia cho 29 dư 5 nghĩa là : 29p + 5 ( p thuộc N )

Tương tự A = 31q + 28 ( q thuộc N )

Nê 29p + 5 = 31q + 28 => 29.( p - q ) = 2q + 23

Ta thaayd : 2q + 23 là số lẻ => 29. ( p - q ) cũng là số lẻ => p - q >=1

theo giả thiết A nhỏ nhất => q nhỏ nhất ( A = 31q + 28 )

=> 2q = 29.( p - q ) -23 nhỏ nhất

=> p - q nhỏ nhất

do đó p - q =1  => 2q = 29 - 23 = 6

=> q = 3

A = 31q + 28 = 31.3 + 28 = 121

28 tháng 9 2021

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p  N)

Tương tự:  A = 31q + 28 (q  N)

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q  1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                         => 2q = 29(p - q) - 23 nhỏ nhất

                                         => p - q nhỏ nhất

Do đó p - q = 1 => 2q = 29 - 23 = 6

                         => q = 3

28 tháng 9 2021

Gọi số tự nhiên cần tìm là \(A\)

Chia cho 29 dư 5 nghĩa là: \(A=29p+5\left(p\in N\right)\)

Tương tự:  \(A=31q+28\left(q\in N\right)\)

Nên: \(29p+5=31q+28\) \(\Rightarrow\) \(29-\left(p-q\right)=2q+23\)

Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow\) \(29\left(p-q\right)\) cũng là số lẻ \(\Rightarrow\)\(p-q\ge1\)

Theo giả thiết A nhỏ nhất

\(\Rightarrow\) q nhỏ nhất \(\left(A=31q+28\right)\)

\(\Rightarrow\)\(2q=29\left(p-q\right)-23\) nhỏ nhất

\(\Rightarrow\) \(p-q\) nhỏ nhất

Do đó:

\(p-q=1\) \(\Rightarrow\) \(2q=29-23=6\)

\(\Rightarrow\) \(q=3\)

Vậy số cần tìm là: \(A=31q+28=31.3+28=121\)

12 tháng 10 2016

Bạn tham khảo nhé ! 

Ấn vào đây nhé bạn !

2 tháng 11 2016

biết rắng khi chia số này cho 29 dư 5, còn khi chia cho 31 thì dư 28

9 tháng 7 2018

theo bài ra ta có

a=29*k+5    (1)

a=31*q+28   (2)

từ 1 và 2 suy ra 29*k+5=31*q+28

                        29k=31q+23

                      29k-29q +2q+23

                     29k-29q=2q+23

                    29(k-q)=2q+23

                 vì a bé nhất nên 

                  q bé nhất có thể

                    2q+23 bé nhất khác 0 

                  2q+23=24

                   q=3

thay vào ta có 31*3+28=121

                      

12 tháng 11 2017

121 nha bạn

mk chc chan dung

12 tháng 11 2017

Gọi số này là a, a:29=k dư 5: a:31=m dư 28

=> 29k + 5 = 31m +28

=> 29k + 29m = 23 + 2m

\(\Rightarrow29k+29m⋮29\)

\(\Rightarrow23+2m⋮29\)

Mà số cần tìm là STN nhỏ nhất

\(\Rightarrow\left(23+2m\right)⋮29\)và là STN nhỏ nhất

=> 2m = 29-23

=> 2m = 6

=> m=3

=> 31m + 28 = 31.3 + 28 chia hết cho a

=> a = 31.3+28

=> a = 93 + 28

=> a = 121

Vậy, số cần tìm là 121

5 tháng 7 2016

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 : A = 29p + 5 ( p ∈ N )

                       :  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                    =>2q = 29(p – q) – 23 nhỏ nhất

                                    => p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

                        => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

5 tháng 7 2016

Số cần tìm là 121