CMR:A(n)=3n+63 chia hết cho 72 với N chẵn n thuộc N ; n lớn hơn hoặc bằng 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hiểu dấu ":" là kí hiệu đồng dư nhé
32 : 9 (mod72)
gọi n=2k
do n chẵn nên 3n : 9 (mod 72)
3n+63:9+63:72
=>3n+63 chia hết cho 72
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
Ta có:
+) \(A\left(n\right)=3^n+63⋮9\) với n > = 2
+) Vì n chẵn nên đặt n = 2k và k nguyên dương
\(A\left(n\right)=3^n+63=3^{2k}-1+64\)
Vì \(3^{2k}-1=9^k-1⋮\left(9-1\right)\Rightarrow3^{2k}-1⋮8\) và 64 chia hết cho 8
=> \(A\left(n\right)=3^n+63⋮8\)
Lại có: ( 8; 9) = 1 và 8.9 = 72
=> \(A\left(n\right)⋮72\) với n số tự nhiên chẵn và lớn hơn hoặc bằng 2.
Ta có: B=n2+n3=n.(n2+1)
Vì n là số tự nhiên=>n có 2 dạng là 2k và 2k+1
*Với n=2k=>B=n.(n2+1)=2k.(2k2+1) chia hết cho 2=>B chẵn(1)
*Xét n=2k+1=>B=n.(n2+1)=(2k+1).((2k+1)2+1)
=>B=(2k+1).(2k2+2.2k.1+12+1)
=>B=(2k+1).(2k.2k+2.2k+1+1)
=>B=(2k+1).(2.4k+2.2k+2)
=>B=(2k+1).(4k+2k+1).2 chia hết cho 2
=>B chẵn(2)
Từ (1) và (2)=>B là số chẵn
=>B:2(dư 0)
Mình cứ tưởng trên đời này có mỗi mình tuôi là khổ nhất hóa ra còn người khổ hơn tuôi nưa!!! Đò chính là nguyenminhtam
Noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo!!!!!!