Bài 1: Chứng minh rằng
1 phần 12 + 1 phần 13 + 1 phần 14 + … + 1 phần 22 > 1 phần 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
\(\Rightarrow\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}+\frac{3}{14}< S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}\)
\(\frac{3}{14}\times5< S< \frac{3}{10}\times5\Rightarrow\frac{15}{14}< S< \frac{3}{2}\)
mà \(\frac{15}{14}>1;\frac{3}{2}< 2\Rightarrow1< S< 2\)
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Ta có: \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}>\frac{1}{20}\) (vì từng phân số lớn hơn \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
Mà \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}>\frac{1}{2}\)
Chúc bn học tốt