Giải pt
\(\left(a+1\right)x+\frac{\text{ax}-1}{a}>\frac{1}{a}\left(a\ne0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đến đó có lẽ xét TH bạn ạ
xét a,x>0
xét a,x<0
xét a<0,x>0
xét a>0,x<0
Mình định nhóm rồi mới xét nhưng ko ra được, chắc phải nhờ mấy a lớp lớn thôi :)) Shop Fpt
Quy đồng rồi phân tích nhân tử bình thường đi
\(\left(x-1\right)\left(x-ab-bc-ca\right)\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
Đặt biểu thức trên là A
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\ne0\)
\(\Rightarrow x=ak,y=bk,z=ck\)
Nên \(A=\frac{\text{[}\left(ak\right)^2+\left(bk\right)^2+\left(ck\right)^2\text{]}.\left(a^2+b^2+c^2\right)}{\left(a.ak+b.bk+c.bk\right)^2}\)
\(=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right).\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)
\(=\frac{k^2\left(a^2+b^2+c^2\right).\left(a^2+b^2+c^2\right)}{\text{[}k\left(a^2+b^2+c^2\right)\text{]}^2}\)
\(=\frac{k^2.\left(a^2+b^2+c^2\right)^2}{k^2.\left(a^2+b^2+c^2\right)}\)
\(=1\)
Vậy A=1
à quên sửa dòng trên chỗ A=1 cái chỗ mẫu là \(k^2.\left(a^2+b^2+c^2\right)^2\)nhen :v
a \(\ne\)0; a>-2: \(x>\frac{2}{a\left(a+2\right)}\)
a<-2: \(x< \frac{2}{a\left(a+2\right)}\)
a=-2 bpt đúng với mọi x