K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020
https://i.imgur.com/ROZBcM7.jpg
25 tháng 4 2020

O A B D m C

a) \(\widehat{BDA}=90^o\)(góc nội tiếp chắn nửa đường tròn)

=>\(\widehat{BDM}=90^o;\widehat{MCB}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{BDM}+\widehat{MCB}=90^o+90^o=180^o\)

=> tứ giác BCMD nội tiếp (tứ giác có 2 góc đối bằng 180o)

b) \(\sin\widehat{BAD}=\frac{BD}{AB}=\frac{R}{2R}=\frac{1}{2}=\sin30^o\Rightarrow\widehat{BAD}=30^o\)

\(AD=AB.\cos\widehat{BAD}=2R.\cos30^o=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}\)

Xét \(\Delta\)CMA có: \(\widehat{C}=90^o\), AC=AB+CB=3R có AC=MAcosA

=> \(MA=\frac{AC}{\cos30^o}=\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}R\)

=> MD=MA-AD=\(2\sqrt{3}R-\sqrt{3}R=\sqrt{3}R\)

=> AD=MD=\(R\sqrt{3}\)=> D là trung điểm MA

=> \(\Delta\)MBA cân tại B (vì BD vừa là đường cao vừa là đường trung tuyến)

c) MA.AD=\(\left(2\sqrt{3}R\right)\cdot R\sqrt{3}=6R^2\)

21 tháng 5 2022

a. Ta có : \(\hat{BDM}=90^o\) (kề bù với \(\hat{BDA}\) nội tiếp chắn nửa đường tròn).

\(\hat{BCM}=90^o\left(gt\right)\)

Vậy : BCMD nội tiếp được một đường tròn (\(\hat{BDM}+\hat{BCM}=180^o\)) (đpcm).

 

b. Xét △ADB và △ACM :

\(\hat{ADB}=\hat{ACM}=90^o\)

\(\hat{A}\) chung

\(\Rightarrow\Delta ADB\sim\Delta ACM\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AM}\Leftrightarrow AD.AM=AB.AC\) (đpcm).

 

c. Ta có : \(OD=OB=BD=R\) ⇒ △ODB đều.

\(\Rightarrow S_{\Delta ODB}=\dfrac{\sqrt{3}}{4}R^2\)

\(\hat{BOD}\) là góc ở tâm chắn cung BD \(\Rightarrow sđ\stackrel\frown{BC}=\hat{BOD}=60^o\) (do △ODB đều).

\(S_{ODB}=\dfrac{\text{π}R^2n}{360}=\dfrac{\text{π}R^2.60}{360}=\dfrac{\text{π}R^2}{6}\)

\(\Rightarrow S_{vp}=S_{ODB}-S_{\Delta ODB}=\dfrac{\text{π}R^2}{6}-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{\text{π}}{6}R^2-\dfrac{\sqrt{3}}{4}R^2\)

\(=\dfrac{2\text{π}-3\sqrt{3}}{12}R^2\)

8 tháng 4 2022

.

 

7 tháng 6 2016

làm theo phương trình

7 tháng 6 2016

mình làm ra bài này rồi

7 tháng 1 2019

O o A B C d M P N Q

tg là tam giác nha ! 

a ) 

Ta có : gócABM = 90o ( góc nội tiếp chắn nửa đường tròn đường kính AB ) 

Ta có : gócABM + gócAPM = 180o ( 2 góc kề bù ) 

=> gócAPM = 180o - gócABM = 180o - 90o = 90o 

Xét tứ giác ACPM , có : 

gócACP = 90o ( gt ) 

gócAPM = 90o ( cmt ) 

gócACP + gócAPM = 90o + 90o =180 

Do đó : tứ giác ACPM nội tiếp được đường tròn ( có tổng số đo 2 góc đối diện bằng 180o ) 

=> A , C , P , M cùng thuộc 1 đường tròn .

1 tháng 4 2022
PC song song NQ
10 tháng 2 2021

a.Ta có BC là đường kính của (O)→AB⊥AC
Mà HM⊥BC

→HAC^=HMC^=90o

→HACM nội tiếp đường tròn đường kính CH

b.Ta có AHMC nội tiếp

→HAM^=HCM^=DCB^=DAB^

→AB là phân giác DAM^

c.Vì BC là đường kính của (O)→CD⊥BD→CD⊥BI

Xét ΔIBC có IM⊥BC,CD⊥BI

Mà IM∩CD=H→H là trực tâm ΔIBC→BH⊥IC→BA⊥IC
Mà AB⊥AC→I,A,C thẳng hàng

Xét ΔBDH,ΔBAI có:

Chung B^

BDH^=BAI^=90o

→ΔBDH∼ΔBAI(g.g)

→BDBA=BHBI

10 tháng 2 2021

Thanh Nguyen Phuc  : Copy thì nhớ ghi nguồn nhé , cóp lỗi hết cả bài làm rồi kìa :))

12 tháng 4 2022

Tham khảo 

https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/

12 tháng 4 2022

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°

PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°

Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

ˆBMA=ˆBCP=90°BMA^=BCP^=90° 

ˆPBCPBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)

Hay ˆCPQ=ˆCMACPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)

⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^

Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)

⇒ ˆCPQ=ˆPQNCPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3