C/m rằng,nếu a/b=b/c=c/d thì a3+b3+c3/b3+c3+d3=a/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b+c+d=0 => a+d= -b-c; (a+b)3=a3+b3+3ab(a+b) => a3+b3=(a+b)3-3ab(a+b)
a3+d3+b3+d3
=(a+d)3- 3ad(a+d)+ (b+c)3-3bc(b+c) (1)
Do a+d=-b-c nên pt (1) trở thành:
-(b+c)3-3ad(-b-c)+ (b+c)3-3bc(b+c)
=3ad(b+c)-3bc(b+c)
=3(b+c)(ad-bc) <đccm>
Ta có:
\(a^3+b^3+c^3+d^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)
\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))
\(=3\left(c+d\right)\left(ab-cd\right)\)
Vậy đẳng thức được chứng minh.
Ta có : \(a+b+c+d=0\)
\(\Leftrightarrow a+b=-c-d\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c-d\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab.\left(a+b\right)=-c^3-d^3+3cd.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3cd.\left(c+d\right)-3ab.\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.cd.\left(a+b\right)+3ab.\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3.\left(c+d\right)\left(cd+ab\right)\)
Ta có : a+b+c+d=0
⇔a+b=−c−d
⇔(a+b)3=(−c−d)3
⇔a3+b3+3ab.(a+b)=−c3−d3+3cd.(c+d)
⇔a3+b3+c3+d3=3cd.(c+d)−3ab.(a+b)
⇔a3+b3+c3+d3=3.cd.(a+b)+3ab.(c+d)
⇔a3+b3+c3+d3=3.(c+d)(cd+ab)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Cảm ơn bạn Xyz nhiều