K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

2=3y=5z <=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=>x=...

y=..

z=...

tick đi

12 tháng 2 2016

567

ủng hộ mk đi các bạn

12 tháng 2 2016

giup minh nhe thanks

 

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

2 tháng 8 2018

Biểu đồBiểu đồ

2 tháng 8 2018

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
17 tháng 10 2017

\(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t.c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\\\dfrac{y}{10}=5\\\dfrac{z}{6}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=50\\z=30\end{matrix}\right.\)

Vậy ..

17 tháng 10 2017

Theo đề bài ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)\(x+y-z=95\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y-z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{95}{\dfrac{19}{30}}=150\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{\dfrac{1}{2}}=150\Rightarrow x=150.\dfrac{1}{2}=75\\\dfrac{y}{\dfrac{1}{3}}=150\Rightarrow y=150.\dfrac{1}{3}=50\\\dfrac{z}{\dfrac{1}{5}}=150\Rightarrow=150.\dfrac{1}{5}=30\end{matrix}\right.\)

Vậy...............

10 tháng 7 2015

\(2x=3y=5z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{15}=\frac{y}{10};\frac{y}{10}=\frac{z}{6}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

suy ra:

\(\frac{x}{15}=5\Rightarrow x=5.15=75\)

\(\frac{y}{10}=5\Rightarrow y=5.10=50\)

\(\frac{z}{6}=5\Rightarrow z=5.6=30\)

5 tháng 8 2016

có 2x=3y=5z

=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x= 15.5=75, y= 10.5=50, z= 6.5= 30

vậy x=75, y = 50, z = 30

27 tháng 6 2016

Từ 2x=3y=5z => x/15=y/10=z/6

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

x/15=y/10=z/6=x+y+z/15+10+6=95/19=5

=> x=5.15=75

y=5.10=50

z=5.6=30

kết quả đúng 100% ạ

27 tháng 6 2016

Vì 2x=3y=5z=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

MÀ x+y+z=95 => Ta có :\(\frac{x+y+z}{15+10+6}=\frac{95}{31}\)

=> \(x=45\frac{30}{31};y=30\frac{20}{31};z=18\frac{12}{31}\)

15 tháng 3 2022

`Answer:`

\(2x=3y=5z;x+y+z-2=95\)

\(\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30};x+y+z=97\)

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6};x+y+z=97\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{97}{31}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{97}{31}\Rightarrow x=\frac{1455}{31}\\\frac{y}{10}=\frac{97}{31}\Rightarrow y=\frac{970}{31}\\\frac{z}{6}=\frac{97}{31}\Rightarrow z=\frac{582}{31}\end{cases}}\)