Cho ngũ giác lồi ABCDE. Gọi M,P,N,Q lần lượt là các trung điểm của AB, BC,CD, DEvà H, K lần lượt là trung điểm của MN và PQ. Chứng minh: AE // HK và AE = 4 HK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Gọi R là trung điểm BE. Trong \(\Delta\)BCD có P, N là trung điểm của BC và DC nên PN là đường trung bình của tam giác
\(\Rightarrow\) PN // BD và PN = \(\frac{BD}{2}\)
Tương tự RQ là đường trung bình của \(\Delta\)BED
nên RQ // BD và RQ = \(\frac{BD}{2}\)
\(\Rightarrow\) PMQR là hình bình hành. Có K là trung điểm của đường chéo PQ thì K là trung điểm của RN (hình bình hành có hai đường chéo cắt nhau tai trung điểm mỗi đường)
Trong \(\Delta\)MNR có HK là đường trung bình
\(\Rightarrow\) HK // MR và HK = \(\frac{MR}{2}\)(1)
Trong \(\Delta\)ABE có MR là đường trung bình
\(\Rightarrow\) MR // AE và MR = \(\frac{AE}{2}\) (2)
Từ (1) và (2) => HK // AE và HK = \(\frac{AE}{4}\)
Bài này ko khó lắm đâu. Bạn chỉ cần nghĩ một chút thôi.
a,Nối A với C.
Xét tam giác BAC có: M là trung điểm của AB, N là trung điểm của BC
Suy ra: MN là đường trung bình của tam giác BAC
Nên MN song song với BC.(1)
Xét tam giác ACD có: P là trung điểm của CD và Q là trung điểm của AD.
Do đó: PQ là đường trung bình của tam giác ACD
Nên PQ song song với BC. (2)
Từ (1) và (2), ta có: MN song song với PQ.
b, Xét tam giác MQP có: I là trung điểm của MQ, K là trung điểm của MP
Vì thế IK là đường trung bình của tam giác MQP
Suy ra: IK song song với PQ.
Tương tự, KH là đường trung bình của tam giác MNP
Nên KH song song với MN.
Mà MN song song với PQ
Do đó: KH song song với PQ
Qua điểm K nằm ngoài đường thẳng PQ, có 2 đường thẳng IK,KH cùng song song với PQ nên theo tiên đề Ơclít , 3 điểm I,K,H thẳng hàng.
Chúc bạn học tốt.