\(\lceil\) Chuyên đề \(\rfloor\): Bất đẳng thức hàng tuần. (Post 2)
1/ Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 3. Chứng minh:
\(a^2+b^2+c^2+3abc\ge6\)
2/ Cho a, b, c là các số thực không âm thỏa mãn a + b + c = 3. Chứng minh rằng:
\(\frac{a^2}{3a+b^2}+\frac{b^2}{3b+c^2}+\frac{c^2}{3c+a^2}\ge\frac{3}{4}\)
3/ Cho a, b, c là 3 cạnh của tam giác. Chứng minh rằng:
\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge\frac{\left(2a+b\right)\left(2b+c\right)\left(2c+a\right)}{27}\)
4/ Cho a, b, c là các số thực dương. Chứng minh rằng:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+1\ge\sqrt{\frac{11\left(a^2+b^2+c^2\right)}{ab+bc+ca}+5}\)
5/ Cho a, b, c là số thực dương. Chứng minh:
\(\frac{a+b+c}{9\sqrt[3]{abc}}\ge\frac{a^2}{4a^2+5bc}+\frac{b^2}{4b^2+5ca}+\frac{c^2}{4c^2+5ab}\)
Xem TOPIC (Post 1) tại:Câu hỏi của tth - Toán lớp 8 | Học trực tuyến (vẫn nhận bài đến hết thứ 7 tuần này, ngày 25/4.)
TOPIC này thời gian nộp bài tương tự như trước (1 tuần, đến hết thứ Năm tuần sau, ngày 30/4)
Riêng bài \(5\) mong mọi người tìm những cách hay chứ đừng như cách em, nhìn là hết muốn đọc rồi :))
Bài 1 : \(VT=a^2+b^2+c^2+3abc=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+3abc\left(a+b+c\right)}{a+b+c}\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc}{a+b+c}\)
\(=\frac{a^3+b^3+c^3+3abc+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+6abc}{a+b+c}\)
\(\ge\frac{2ab\left(a+b\right)+2bc\left(b+c\right)+2ca\left(c+a\right)+6abc}{a+b+c}\)
\(=\frac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{a+b+c}=6\)
Có sai sót gì xin cmt bên dưới ạ
Nguyễn Thị Ngọc Thơ đúng vậy, lời giải của em:
\(VT-VP\ge\frac{\left(a+b\right)^2}{2}+c^3-\frac{\left(541-37\sqrt{37}\right)}{108}\)
\(={\frac { \left( 6\,c+1+2\,\sqrt {37} \right) \left( -6\,c-1+\sqrt {37 } \right) ^{2}}{216}} \geqq 0\)
Done.