Chứng tỏ:
\(\frac{21}{11}+\frac{19}{30}+\frac{11}{36}< 3\)
Help me!!! T^T
Cần gấp lém!
Ai xong trước hứa sẽ cho tick(làm đầy đủ nhoa)
Thank you!!!! ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Ta có: \(\left(1-\frac{1}{5}\right)\left(1-\frac{2}{5}\right)\left(1-\frac{3}{5}\right)...\left(1-\frac{9}{5}\right)\)
\(=\left(\frac{5}{5}-\frac{1}{5}\right)\left(\frac{5}{5}-\frac{2}{5}\right)\left(\frac{5}{5}-\frac{3}{5}\right)\left(\frac{5}{5}-\frac{4}{5}\right)\left(\frac{5}{5}-\frac{5}{5}\right)...\left(\frac{5}{5}-\frac{9}{5}\right)\)
\(=\frac{4}{5}.\frac{3}{5}.\frac{2}{5}.\frac{1}{5}.0...\frac{-4}{5}\)
Mà trong một dãy phép nhân có một số là 0 thì tích của nó là 0
\(\Rightarrow\frac{4}{5}.\frac{3}{5}.\frac{2}{5}.\frac{1}{5}.0...\frac{-4}{5}=0\)
Vậy biệt thức trên có giá trị bằng 0
Ta có:
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\)\(\frac{1}{19}\)
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+...+\frac{1}{19}\right)\)
\(\Rightarrow B>\left(\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\right)+\left(\frac{1}{20}+...+\frac{1}{20}\right)\)
\(B>\frac{4}{5}+\frac{1}{5}\)
\(B>1\)\(\left(đpcm\right)\)
a) 75 - 3.(2/13+1/17-1/19) 3.[25-(2/13+1/17-1/19)]
-------------------------------------- = ---------------------------------------------- = 3/11
275-11.(2/13+1/17-1/19) 11.[25-(2/13+1/17-1/19)]
a) \(\frac{75-\frac{6}{13}+\frac{3}{17}-\frac{3}{19}}{275-\frac{22}{13}+\frac{11}{17}-\frac{11}{19}}=\frac{75-3.\left(\frac{2}{13}+\frac{1}{17}-\frac{1}{19}\right)}{275-11.\left(\frac{2}{13}+\frac{1}{17}-\frac{1}{19}\right)}\)
\(=\frac{75-3}{275-11}\)
\(=\frac{72}{264}=\frac{3}{11}\)
b) \(\frac{2}{3.5}+\frac{7}{5.12}+\frac{9}{4.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{12}+\frac{3}{52}\)
\(=\frac{1}{3}-\frac{1}{12}+\frac{3}{52}\)
\(=\frac{1}{4}+\frac{3}{52}=\frac{4}{13}\)
C=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\)
Do mỗi số hạng(phân số) trong C đều lớn hơn 0 nên C>0.
Ta thấy C có 9 số hạng và:
\(\frac{1}{9}>\frac{1}{11}\) \(\frac{1}{9}>\frac{1}{12}\) \(\frac{1}{9}>\frac{1}{13}\) .......
\(\frac{1}{9}>\frac{1}{19}\)
Vậy:
C<9.1/9
C<1
Theo đầu đề bài đã nói,C>0 và giờ là CC<1,vậy ta có:
0<C<1
Do 0 và 1 là 2 số tự nhiên LIÊN TIẾP mà C nằm giữa,chắc chắn C không phải số tự nhiên.
Vậy C không phải 1 số nguyên.
Chúc chị học tốt^^
Ta có: \(\frac{3}{1^2.2^2}=\frac{3}{1.4}=1-\frac{1}{4}\); \(\frac{5}{2^2.3^2}=\frac{5}{4.9}=\frac{1}{4}-\frac{1}{9}\); \(\frac{7}{3^2.4^2}=\frac{7}{9.16}=\frac{1}{9}-\frac{1}{16}\); ...; \(\frac{39}{19^2.20^2}=\frac{39}{361.400}=\frac{1}{361}-\frac{1}{400}\)
Gọi tổng đó là A => A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{361}-\frac{1}{400}\)
=> \(A=1-\frac{1}{400}=\frac{399}{400}< \frac{400}{400}=1\)
=> A < 1
\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}...+\frac{19}{9^2.10^2}\)
=> \(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}...+\frac{19}{81.100}=\left(\frac{1}{1}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)\)
=> \(A=\frac{1}{1}-\frac{1}{100}=1-\frac{1}{100}< 1\)
=> A <1
(Là nhỏ hơn 1 chứ không phải lớn hơn 1 bạn nhé)
=> 1/11 - 1/13 + 1/13 - 1/15 + ..... + 1/19 - 1/21 - x + 4 + 221/231 = 7/3
=> 1/11 - 1/21 - x + 4 + 221/231 = 7/3
=> 2099/420 - x = 7/3
=> x = 2099/420 - 7/3 = 373/140
Tk mk nha
Bài làm
\(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2\left(\frac{1}{11.13}+\frac{1}{13.15}+...+\frac{1}{19.21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2\left(\frac{1}{11}-\frac{1}{21}\right)-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow2.\frac{10}{231}-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow\frac{20}{231}-x+4+\frac{221}{231}=\frac{7}{3}\)
\(\Leftrightarrow\frac{20}{231}-x+\frac{924}{231}+\frac{221}{231}=\frac{539}{231}\)
\(\Leftrightarrow\frac{20}{231}-x+\frac{924}{231}=\frac{539}{231}-\frac{221}{231}\)
\(\Leftrightarrow\frac{20}{231}-x+\frac{924}{231}=\frac{318}{231}\)
\(\Leftrightarrow\frac{20}{231}-x=\frac{318}{231}-\frac{924}{231}\)
\(\Leftrightarrow\frac{20}{231}-x=-\frac{606}{231}\)
\(\Leftrightarrow x=\frac{20}{231}-\frac{606}{231}\)
\(\Leftrightarrow x=-\frac{586}{231}\)
Vậy \(\Leftrightarrow=-\frac{586}{231}\)
Bài giải
Ta có : \(\frac{21}{11}+\frac{19}{30}+\frac{11}{36}=\frac{3780}{1980}+\frac{1254}{1980}+\frac{605}{1980}=\frac{5639}{1980}< \frac{5940}{1980}=3\left(đpcm\right)\)
ờm,... Xin lỗi bạn nha ,cách của mình có thô sơ tí ,hihihihi ,xin lỗi bạn nhiều !!!