K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2023

(a) Điều kiện : \(x\ne-1.\)

Ta có : \(P=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+3x+1}{x+1}\)

\(=\dfrac{x\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{\left(2x+1\right)\left(x+1\right)}{x+1}\)

\(=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)

\(=x\left(x+1\right)+1-2x-1\)

\(=x^2-x.\)

Vậy : Với mọi \(x\ne-1\) thì \(P=x^2-x.\)

 

(b) Ta có : \(P=x^2-x\)

\(=\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2\)

\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Vậy : \(MinP=-\dfrac{1}{4}.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=\dfrac{1}{2}.\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2023

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết thế này khó đọc quá trời.

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$

$=(x^2+2xy+y^2)+2x+y^2+4y+2021$

$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$

$=(x+y+1)^2+(y+1)^2+2019\geq 2019$

Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$

$\Leftrightarrow (x,y)=(0,-1)$

20 tháng 10 2015

a) x2 - 2x + 5 = (x - 1)2 + 4 >= 4

Min là 4 khi x = 1

 

NV
24 tháng 2 2021

\(P=x^2-3x+\dfrac{1}{2x}+\dfrac{7}{4}+\dfrac{1}{4}\)

\(P=\dfrac{4x^3-12x^2+7x+2}{4x}+\dfrac{1}{4}=\dfrac{\left(x-2\right)\left(4x^2-4x-1\right)}{4x}+\dfrac{1}{4}\)

\(P=\dfrac{\left(x-2\right)\left[4x\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)+\dfrac{7x}{2}\right]}{4x}+\dfrac{1}{4}\ge\dfrac{1}{4}\)

\(P_{min}=\dfrac{1}{4}\) khi \(x=2\)

24 tháng 2 2021

\(P=x^2-3x+\dfrac{1}{2x}+2\)

\(P=x^2-4x+4+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

\(P=\left(x-2\right)^2+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)

Áp dụng bđt cosi và bđt x \(\ge\)2

Ta có: P \(\ge0+2\sqrt{x\cdot\dfrac{4}{x}}-\dfrac{7}{2.2}-2=\dfrac{1}{4}\)

Dấu "=" xảy ra <=> x = 2

Vậy MinP = 1/4 <=> x = 2

NV
30 tháng 12 2021

a.

\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)

\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)

\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)

b.

Đặt \(x-1=t\Rightarrow x=t+1\)

\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)

\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)

30 tháng 12 2021

\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Dấu \("="\Leftrightarrow x=2\)

18 tháng 9 2021

\(B=x\left(2x-1\right)=2x^2-x=2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{1}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)

\(minB=-\dfrac{1}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(C=x\left(3x+4\right)=3x^2+4x=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{4}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minC=-\dfrac{4}{3}\Leftrightarrow x=-\dfrac{2}{3}\)

18 tháng 9 2021

`B=x(2x-1)`

`=2x(x-1/2)`

`=2(x^2-1/2x)`

`=2(x^2-1/2x+1/16)-1/8`

`=2(x-1/4)^2-1/8>=-1/8`

Dấu "=" xảy ra khi `x=1/4`

`C=x(3x+4)`

`=3x(x+4/3)`

`=3(x^2+4/3x)`

`=3(x^2+4/3x+4/9)-4/3`

`=3(x+2/3)^2-4/3>=-4/3`

Dấu "=" xảy ra khi `x=-2/3`