K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Không giải Pt xét xem mỗi PT sau có bao nhiêu nghiệm a) x2 – 2x – 5= 0 ( Có 2 nghiệm phân biệt ) b) x2 + 4x + 4= 0 ( PT có nghiệm kép ) c) x2 – x + 4 = 0 (PT vô nghiệm ) d) x2 – 5x + 2=0 ( PT có 2 nghiệm phân biệt ) *) Nhận xét : - Với a và c trái dấu thì PT luôn có 2 nghiệm phân biệt - Với a và c cùng dấu thì không xác định đƣợc số nghiệm của PT mà phải nhờ dấu của đen ta D1ng 2: Dïng c«ng thøc nghiÖm ®Ó gi¶I PT bËc 2 Bμi 1: Gi¶I c...
Đọc tiếp

Bài 1: Không giải Pt xét xem mỗi PT sau có bao nhiêu nghiệm
a) x2
– 2x – 5= 0 ( Có 2 nghiệm phân biệt )
b) x2
+ 4x + 4= 0 ( PT có nghiệm kép )
c) x2
– x + 4 = 0 (PT vô nghiệm )
d) x2
– 5x + 2=0 ( PT có 2 nghiệm phân biệt )
*) Nhận xét :
- Với a và c trái dấu thì PT luôn có 2 nghiệm phân biệt
- Với a và c cùng dấu thì không xác định đƣợc số nghiệm của PT mà phải nhờ dấu của đen ta
D1ng 2: Dïng c«ng thøc nghiÖm ®Ó gi¶I PT bËc 2
Bμi 1: Gi¶I c ̧c PT sau :
a) x2
– 11x + 38 = 0 b) 5x2

– 6x + 27 = 0

c) x2
– (
2  8
)x+ 4 = 0 d)

1 0

4
1 2
x  x  

Bμi 2: Gi¶i PT sau :

 
0
2
1
2
3
1
)(1 2) 2(1 2) 1 3 2 0;............................ )
)( 3 1) 2 3 3 1 0;....................................... ) 1 3 (2 3 1) 3 1 0
2 2
2 2
        
          
c x x d x x
a x x b x x

*) Nhận xét :
Cần đƣa các hệ số của PT bậc hai về dạng đơn giản nhất để áp dụng công thức nghiệm
D1ng 3: T×m §K cña tham sè ®Ó PT cã nghiÖm , v« nghiÖm , cã nghiÖm kÐp :
Bài 1: Cho phƣơng trình : x2

– 4x + 3m – 1= 0 (1) (

’= 5- 3m )

a) Tìm m để PT (1) có 2 nghiệm phân biệt
b) Tìm m để PT(1) có nghiệm
Bài 2: Cho PT: x2

– 2m x + 4 =0 (2) (

’= m
2
- 8 )

a) Tìm m để PT(2) có nghiệm
b) Tìm m để PT(2) vô nghiệm
D1ng 4: Chøng minh PT lu«n cã nghiÖm , v« nghiÖm :
Bài 1: CMR: PT sau luôn có nghiệm với mọi giá trị của m

a) x
2
–( m – 1)x2
– 5 = 0

b) x
2
– 2(m +2)x - 4m - 10 = 0
Bμi 2: Cho PT : mx2 – (2m + 1) x+ (m + 1) = 0 ( 1)
a) CMR : PT (1) lu«n cã nghiÖm víi mäi gi ̧ trÞ cña m
b) T×m gi ̧ trÞ cña m ®Ó PT ( 1) cã nghiÖm > 2

2

D1ng 5: Sù t-¬ng giao cña ®-êng th1⁄4ng vμ ®-êng cong :
Bμi 1: Cho ®-êng th1⁄4ng (d) y = 2x – 5 vμ (P) y = 3x2
T×m täa ®é giao ®iÓm cña (d) vμ (P)
Bμi 2: Cho (d) y = 2(m +1) x – 1 vμ (P) y = x
2
. T×m m ®Ó

a) (d) c3⁄4t (P) t1i 2 ®iÓm ph©n biÖt
b) ( d) tiÕp xóc víi ( P)
c) ( d) không cắt (P)
Bài 3: ( Thi vào 10 năm học 2015-2016)
Cho hàm số y = x2

( P) và y = ( 5m-1)x – 6m2 + 2m ( d)
a) Tìm m để (d) cắt (P) tại 2 điểm phân biệt
b) Gọi x1 và x2

là hoành độ giao điểm của P và (d) . Tìm m để x1
2 +x2
2 = 1

1
21 tháng 4 2020

vl, mày hỏi thế thì ai chả lời được Mai

9 tháng 2 2022

Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)

a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)

b. Để phương trình có nghiệm thì: 

\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)

c. Để phương trình có nghiệm kép thì:

\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)

Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)

 

d. Để phương trình có nghiệm phân biệt thì:

\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)

9 tháng 2 2022

a, Để pt vô nghiệm 

\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)

b, Để pt có nghiệm 

\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)

c, Để pt có nghiệm kép 

\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)

\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)

d, Để pt có 2 nghiệm pb 

\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)

22 tháng 3 2022

a.Bạn thế vào nhé

b.\(\Delta=3^2-4m=9-4m\)

Để pt vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)

c.Ta có: \(x_1=-1\)

\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)

d.Theo hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)

1/ \(x_1^2+x_2^2=34\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)

\(\Leftrightarrow\left(-3\right)^2-2m=34\)

\(\Leftrightarrow m=-12,5\)

..... ( Các bài kia tương tự bạn nhé )

AH
Akai Haruma
Giáo viên
21 tháng 5 2022

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

2:

a: y1+y2=-(x1+x2)=-5

y1*y2=(-x1)(-x2)=x1x2=6

Phương trình cần tìm có dạng là;

x^2+5x+6=0

b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6

y1*y2=1/x1*1/x2=1/x1x2=1/6

Phương trình cần tìm là:

a^2-5/6a+1/6=0

11 tháng 3 2022

Bài 1:

a, Thay m=-1 vào (1) ta có:
\(x^2-2\left(-1+1\right)x+\left(-1\right)^2+7=0\\ \Leftrightarrow x^2+1+7=0\\ \Leftrightarrow x^2+8=0\left(vô.lí\right)\)

Thay m=3 vào (1) ta có:

\(x^2-2\left(3+1\right)x+3^2+7=0\\ \Leftrightarrow x^2-2.4x+9+7=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x-4=0\\ \Leftrightarrow x=4\)

b, Thay x=4 vào (1) ta có:

\(4^2-2\left(m+1\right).4+m^2+7=0\\ \Leftrightarrow16-8\left(m+1\right)+m^2+7=0\\ \Leftrightarrow m^2+23-8m-8=0\\ \Leftrightarrow m^2-8m+15=0\\ \Leftrightarrow\left(m^2-3m\right)-\left(5m-15\right)=0\\ \Leftrightarrow m\left(m-3\right)-5\left(m-3\right)=0\\ \Leftrightarrow\left(m-3\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3\\m=5\end{matrix}\right.\)

c, \(\Delta'=\left[-\left(m+1\right)\right]^2-\left(m^2+7\right)=m^2+2m+1-m^2-7=2m-6\)

Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-6\ge0\Leftrightarrow m\ge3\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+7\end{matrix}\right.\)

\(x_1^2+x_2^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-2\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-2m^2-14=0\\ \Leftrightarrow2m^2+8m-10=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(ktm\right)\\m=-5\left(ktm\right)\end{matrix}\right.\)

\(x_1-x_2=0\\ \Leftrightarrow\left(x_1-x_2\right)^2=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=0\\ \Leftrightarrow\left(2m+2\right)^2-4\left(m^2+7\right)=0\\ \Leftrightarrow4m^2+8m+4-4m^2-28=0\\ \Leftrightarrow8m=28=0\\ \Leftrightarrow m=\dfrac{7}{2}\left(tm\right)\)

11 tháng 3 2022

Bài 2:

a,Thay m=-2 vào (1) ta có:

\(x^2-2x-\left(-2\right)^2-4=0\\ \Leftrightarrow x^2-2x-4-4=0\\ \Leftrightarrow x^2-2x-8=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

b, \(\Delta'=\left(-m\right)^2-\left(-m^2-4\right)\ge0=m^2+m^2+4=2m^2+4>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m^2-4\end{matrix}\right.\)

\(x_1^2+x_2^2=20\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\\ \Leftrightarrow2^2-2\left(-m^2-4\right)=20\\ \Leftrightarrow4+2m^2+8-20=0\\ \Leftrightarrow2m^2-8=0\\ \Leftrightarrow m=\pm2\)

\(x_1^3+x_2^3=56\\ \Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=56\\ \Leftrightarrow2^3-3\left(-m^2-4\right).2=56\\ \Leftrightarrow8-6\left(-m^2-4\right)-56\\ =0\\ \Leftrightarrow8+6m^2+24-56=0\\ \Leftrightarrow6m^2-24=0\\ \Leftrightarrow m=\pm2\)

\(x_1-x_2=10\\ \Leftrightarrow\left(x_1-x_2\right)^2=100\\ \Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-100=0\\ \Leftrightarrow2^2-4\left(-m^2-4\right)-100=0\\ \Leftrightarrow4+4m^2+16-100=0\\ \Leftrightarrow4m^2-80=0\\ \Leftrightarrow m=\pm2\sqrt{5}\)

NV
15 tháng 12 2020

ĐKXĐ: \(x\ge0\)

\(\left(x^2-x-m\right)\sqrt{x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)

Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm

Do đó:

a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm 

\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)

b. Để pt có 2 nghiệm pb 

TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0

\(\Leftrightarrow m=0\)

TH2: (1) có 2 nghiệm trái dấu

\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)

\(\Rightarrow m\ge0\)

c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)

7 tháng 4 2022

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

7 tháng 4 2022

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

a: \(\Leftrightarrow\left(2m+4\right)^2-4m\cdot9=0\)

\(\Leftrightarrow4m^2+16m+16-36m=0\)

\(\Leftrightarrow m^2-5m+4=0\)

\(\Leftrightarrow\left(m-1\right)\left(m-4\right)=0\)

hay \(m\in\left\{1;4\right\}\)

b: \(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2+m+3\right)=0\)

\(\Leftrightarrow4m^2-32m+64-4m^2-4m-12=0\)

=>-36m+52=0

=>-36m=-52

hay m=13/9

d: \(\Leftrightarrow m^2-4m\left(m+3\right)=0\)

\(\Leftrightarrow m\left(m-4m-12\right)=0\)

=>m(-3m-12)=0

=>m=0 hoặc m=-4

a) PT có nghiệm kép khi △=0

\(\Leftrightarrow\left[2\left(m+2\right)\right]^2-4.m.9=0\)

\(\Leftrightarrow4\left(m^2+4m+4\right)-36m=0\)

\(\Leftrightarrow4m^2-20m+16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)

Khi đó nghiệm kép của pt là \(x_1=x_2=\dfrac{-2\left(m+2\right)}{2.m}=\dfrac{-2m-4}{2m}=-1-\dfrac{2}{m}\)

+Khi m=4 thì \(x_1=x_2=-1-\dfrac{2}{4}=-\dfrac{3}{2}\)

+Khi m=1 thì \(x_1=x_2=-1-\dfrac{2}{1}=-3\)