cho tam giác ABC, góc A<90 độ. trên các cạnh AB,AC lần lượt lấy các điểm M,N ko trùng vs các đỉnh của tam giác. BC>MN ko? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo gt ta có : AB = AC
=> tam giác ABC cân tại A
=> góc B = góc C *
Xét tam giác ABD và tam giác ACE có :
+ AB = AC(gt)
+ góc B = góc C ( theo * )
+ BD = CE (gt)
=> tam giác ABD = tam giác ACE ( c . g .c )
=> AD = AE ( 2 cạnh tương ứng )
b) Ta có : DM vuông góc với BC, EN vuông góc với BC
=> tam giác MBD và tam giác NCE là tam giác vuông
Xét : tam giác vuông MBD ( góc D = 90\(^o\)) và tam giác vuông NCE ( góc E = 90\(^o\)) có :
+ BD = CE (gt)
+ góc B = góc C ( theo * )
=> tam giác vuông MBD = tam giác vuông NCE ( cạnh góc vuông + góc nhọn )
c) theo CM ý b) ta có : tam giác MBD = tam giác NCE
=> BM = CN (2 cạnh tương ứng )
Mà :MA + BM = AB, AN + CN = AC
Lại có : AB = AC (gt)
=> AM = AN
=> tam giác AMN cân tại A
Nếu : ABC là tam giác đều
=> góc A = 60\(^o\)
=> tam giác AMN là tam giác đều ( tam giác đều là tam giác cân có 1 góc bằng 60\(^o\))
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
=>ΔBAM=ΔBDM
=>AM=DM
b: Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
góc AMN=góc DMC
=>ΔMAN=ΔMDC
c: ΔMNC có MN=MC
nên ΔMCN cân tại M
a, tam giác ABC cân tại A (Gt)
=> góc ABC = góc ACB (tc)
góc ABC + góc ABM = 180
góc ACB + góc ACN = 180
=> góc ABM = góc ACN
xét tam giác ABM và tam giác ACN có : BM = CN (gt)
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABM = tam giác ACN (c-g-c)
=> AM = AN (đn)
=> tam giác AMN cân tại A (đn)
b, tam giác AMN cân tại A (câu a)
=> góc AMN = góc ANM (tc)
xét tam giác MBH và tam giác NCK có : MB = CN (gt)
góc MHB = góc CKN = 90
=> tam giác MBH = tam giác NCK (ch-gn)
=> BH = CK (đn)
c, tam giác MBH = tam giác NCK (câu b)
=> góc HBM = góc KCN (đn)
góc HBM = góc CBO (đối đỉnh)
góc KCN = góc BCO (đối đỉnh)
=> góc CBO = góc BCO
=> tam giác BOC cân tại O (đl)
chị tự kẻ hình :
a, xét tam giác AMB và tam giác ANC có : MB = CN (gt)
tam giác AMN cân tại A (gt) => AM = AN (đn) và góc AMN = góc ANM (tc)
=> tam giác AMB = tam giác ANC (c - g - c)
=> AB = AC (đn)
=> tam giác ABC cân tại A (đn)
b, tam giác AMB = tam giác ANC (câu a)
=> góc ABM = góc ACN (đn)
góc ABM + góc MBH = 180o (kb)
góc ACN + góc NCK = 180o (kb)
=> góc MBH = góc NCK
xét tam giác MBH và tam giác NCK có : MB = CN (gt)
góc MHB = góc CKN do MH | AB và NK | AC (gt)
=> tam giác MBH = tam giác NCK (ch - gn)
c, tam giác MBH = tam giác NCK (câu b)
=> góc BMH = góc CNK (đn)
=> tam giác MNO cân tại O (đl)
Cả Út, e lớp 4, mak biết bài lp 7, em là thần thánh ak, ns thek thôi chứ cj cx bt lm bài lớp 8 tro khi đó cj ms hok lớp 7. :))
Tam giác AMN có: AM = AN
=> tgiac AMN là tam giác cân
=> \(\widehat{AMN}=\widehat{ANM}=\frac{180^0-\widehat{A}}{2}\) (1)
Tgiac ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) suy ra: \(\widehat{AMN}=\widehat{ABC}\)
mà 2 góc này đồng vị
=> MN // BC