Giải bài toán bằng cách lập phương trình:
tìm 2 số tự nhiên có tổng 2 số bằng 47 và hiệu 2 số đó là 23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có:
a+b=10 và 10b+a-10a-b=36
=>a+b=10 và -9a+9b=36
=>a+b=10 và a-b=-4
=>a=3 và b=7
Gọi \(x\) là chữ số hàng chục \(\left(x\le9,x\in Z^+\right)\)
y là chữ số hàng đơn vị \(\left(y\le9,y\in N\right)\)
Do tổng hai chữ số là 10 nên: \(x+y=10\) (1)
Do khi đổi chỗ hai chữ số cho nhau được số mới lớn hơn số ban đầu 36 đơn vị nên: \(10y+x-10x-y=36\Leftrightarrow-9x+9y=36\) (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=10\\-9x+9y=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=10\\x-y=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=6\\x+y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\) (nhận)
Vậy số cần tìm là 37
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có hệ:
a+b=10 và 10b+a-10a-b=36
=>a+b=10 và -9a+9b=36
=>a+b=10 và a-b=-4
=>a=3 và b=7
Tham khảo:
Gọi x là chữ số hàng chục. Điều kiện: x ∈ N*, 0 < x ≤ 9.
Số tự nhiên lẻ có hai chữ số và chia hết cho 5 có dạng: *5 = 10x + 5
Vì hiệu của số đó và chữ số hàng chục bằng 86 nên ta có phương trình:
(10x + 5) – x = 86
⇔10x + 5 – x = 86
⇔9x = 81
⇔x = 9 (thỏa mãn)
Vậy số cần tìm là 9 + 86 = 95
Gọi số cần tìm là \(\overline{ab},2\le a\le9,0\le b\le9,a,b\inℕ\)
Theo đề: \(\hept{\begin{cases}a=b+2\\\overline{ab}=a^2+b^2+1\Leftrightarrow10a+b=a^2+b^2+1\end{cases}}\)Thay vế trên xuống vế dưới:
\(\Rightarrow10\left(b+2\right)+b=\left(b+2\right)^2+b^2+1\Leftrightarrow b=5\)(vì \(b\inℕ\)) \(\Rightarrow a=b+2=7\)
Vậy số cần tìm là 75
gọi số tự nhiên có hai chữ số là ab
nếu đổi vị trí hai chữ số đó thì số mới là ba
vì tổng của hai chữ số bằng 8 nên ta có: a+b=8 (1)
khi đổi vị trí của hai chữ số thì số tự nhiên đó giảm 36 đơn vị nên ta có:
ab -ba =36
10a+b-10b-a=36
9a-9b=36
a-b=4(2)
từ (1) và (2 ) ta có hệ
a+b=8
a-b=4
a=6 và b=2
Gọi chữ số đơn vị là x (0 < x < 7)
Chữ số hàng chục là x + 2
Ví số cần tìm lớn hơn tổng các bình phương chữ số của nó là 1 đơn vị nên ta có phương trình :
10(x + 2) + x = (x + 2)2 + x2 + 1
Giải phương trình trên ta được x = 5 => x + 2 = 7
Số cần tìm là 75
Gọi 2 số tự nhiên lần lượt là x vày
\(\hept{\begin{cases}x+y=47\\x-y=23\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=35\\y=12\end{cases}}\)
vậy 2 số tự nhiên lá 35 và 12