Tìm n \(\inℕ\) sao cho \(\left(n-8\right)^2+36\)là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì \(\hept{\begin{cases}n^2-6n+10=1\\n^2+6n+10=1\end{cases}}\)
Do \(n\in N\Rightarrow n^2+6n+10>n^2-6n+10\)
Có \(n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\)
\(\Rightarrow n=3\)
Vậy với n = 3 thì \(\left(n^2-8\right)^2+36\) là số nguyên tố
\(\left(n^2-8\right)^2+36=n^4-16n^2+100=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\)là số nguyên tố thì
\(n^2+6n+10\)là số nguyên tố và \(n^2-6n+10=1\)
\(\Leftrightarrow n^2-6n+9=0\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 tai jđây nhé ! mk ngại viết
Bài 1:
Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)
Vì \(p=a+b>2\)nên p là số lẻ
\(\Rightarrow a+b\)và \(c-d\)là các số lẻ
Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)
Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)
Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)
Ta cần tìm số nguyên tố a để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố
Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)
Bài 2 :
Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p
Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)
Nếu \(n-2=1\)thì \(n=3\)
Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn)
Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)
Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố
Vậy \(n=3\)
Chúc bạn học tốt ( -_- )