Cho tam giác OAB cân tại O. Lấy điểm C thuộc OA. Trên tia đối của tia BO lấy điểm D sao cho BD=AC. CD cắt AB ở M. Trên tia đối của tia AB lấy điểm P sao cho AP=MB
a) chứng minh tam giác APC = tam giác BMD
b) CMP là tam giác gì? vì sao?
c) chứng minh M là trung điểm của DC
Bài làm
a) Ta có: \(\widehat{OAB}+\widehat{OAP}=180^0\)( hai góc kề bù )
\(\widehat{OBA}+\widehat{MBD}=180^0\)( hai góc kề bù )
Mà \(\widehat{OAB}=\widehat{OBA}\)( Do tam giác OAB cân ở O )
=> \(\widehat{OAP}=\widehat{MBD}\)
Xét tam giác APC và tam giác BMD có:
AC = BD ( gt )
\(\widehat{OAP}=\widehat{MBD}\)( cmt )
PA = MB ( gt )
=> Tam giác APC = tam giác BMD ( c.g.c )
b) Vì tam giác APC = tam giác BMD ( cmt )
=> \(\widehat{DMB}=\widehat{CPA}\)
Mà \(\widehat{BMD}=\widehat{CMA}\)( Hai góc đối )
=> \(\widehat{CMA}=\widehat{CPA}\)
=> Tam giác CMP cân ở C
c) Vì tam giác CMP cân ở C
=> CP = CM ( hai cạnh bên )
Mà CP = MD ( do tam giác APC = tam giác BMD )
=> CM = MD
=> M là trung điểm CD ( đpcm )