K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Xét tam thức \(f\left( x \right) = 7{x^2} - 19x - 6\) có \(\Delta  = 529 > 0\), có hai nghiệm phân biệt \({x_1} =  - \frac{2}{7},{x_2} = 3\) và có \(a = 7 > 0\)

Ta có bảng xét dấu như sau

 

Vậy nghiệm của bất phương trình là đoạn \(\left[ { - \frac{2}{7};3} \right]\)

b) \( - 6{x^2} + 11x > 10 \Leftrightarrow  - 6{x^2} + 11x - 10 > 0\)

Xét tam thức \(f\left( x \right) =  - 6{x^2} + 11x - 10\) có \(\Delta  =  - 119 < 0\)và có \(a =  - 6 < 0\)

Ta có bảng xét dấu như sau

 

Vậy bất phương trình vô nghiệm

c) \(3{x^2} - 4x + 7 > {x^2} + 2x + 1 \Leftrightarrow 2{x^2} - 6x + 6 > 0\)

Xét tam thức \(f\left( x \right) = 2{x^2} - 6x + 6\) có \(\Delta  =  - 12 < 0\)và có \(a = 2 > 0\)

Ta có bảng xét dấu như sau

 

Vậy bất phương trình có vô số nghiệm

d) Xét tam thức \(f\left( x \right) = {x^2} - 10x + 25\) có \(\Delta  = 0\), có nghiệm kép \({x_1} = {x_2} = 5\) và có \(a = 1 > 0\)

Ta có bảng xét dấu như sau

 

Vậy nghiệm của bất phương trình là \(x = 5\)

14 tháng 6 2017

\(10x^2+11x+3\ge0\)

\(\Leftrightarrow10x^2+5x+6x+3\ge0\)

\(\Leftrightarrow5x\left(2x+1\right)+3\left(2x+1\right)\ge0\)

\(\Leftrightarrow\left(5x+3\right)\left(2x+1\right)\ge0\)

\(\Rightarrow x\le-\frac{3}{5};-\frac{1}{2}\le x\)

26 tháng 10 2015

bạn phải phân tích đa thức thành nhân tử để hạ bậc. Một mẹo mình mách bạn thế này . bạn tìm một giá trị của x thỏa mãn thì dựa vào đó đó phân tich. Thông thường giá trị đó là ước của hằng số trong vế trái ví dụ câu a bạn thay ước của 12. mình thấy -1 thỏa mãn vậy khi phân tích đa thức thành nhân tử chắc chắn sẽ xuất hiện nhân tử là x+1 và dựa vào đó mình phân tích như sau:

x3-6x2+5x+12=0

<=> x3+x2-7x2-7x+12x+12=0

<=> (x3+x2)-(7x2+7x)+(12x+12)=0

<=> x2(x+1​)-7x(x+1​)+12(x+1​)=0

<=> (x+1)(x2-7x+12)=0

Phân tích tiếp nhóm x2-7x+12 = x2-3x-4x+12 = x(x-3)-4(x-3) = (x-3)(x-4)

vậy phương trình tương đương

<=> (x+1)(x-3)(x-4) = 0

đến đây dễ dàng suy ra x = -1; 3; 4

Các câu còn lại tương tự bạn tự làm vì quá nhiều mình không gõ được

NV
13 tháng 2 2020

\(2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow2x^3-32x+3x^2-48=0\)

\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x^2-16\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=-\frac{3}{2}\end{matrix}\right.\)

b/ \(\Leftrightarrow10x^2-15x+4x-6=0\)

\(\Leftrightarrow5x\left(2x^2-3\right)+2\left(2x-3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{5}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

a)

$10x^2-11x-6=0$

$\Leftrightarrow 10x^2-15x+4x-6=0$

$\Leftrightarrow 5x(2x-3)+2(2x-3)=0$

$\Leftrightarrow (2x-3)(5x+2)=0$

$\Rightarrow 2x-3=0$ hoặc $5x+2=0$

$\Rightarrow x=\frac{3}{2}$ hoặc $x=-\frac{2}{5}$

b)

$2x^3+3x^2-32x=48$

$\Leftrightarrow 2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^3-8x^2+11x-44x+12x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$

$\Rightarrow x=\pm 4$ hoặc $x=\frac{-3}{2}$

4 tháng 4 2020

a) x^4 - 5x^2 + 4 = 0

<=> (x^2 - 1)(x^2 - 4) = 0

<=> x^2 - 1 = 0 hoặc x^2 - 4 = 0

<=> x = +-1 hoặc x = +-2

b) x^4 - 10x^2 + 9 = 0

<=> (x^2 - 1)(x^2 - 9) = 0

<=> x^2 - 1 = 0 hoặc x^2 - 9 = 0

<=> x = +-1 hoặc x = +-3

c) x^3 + 6x^2 + 11x + 6 = 0

<=> (x^2 + 5x + 6)(x + 1) = 0

<=> (x + 2)(x + 3)(x + 1) = 0

<=> x + 2 = 0 hoặc x + 3 = 0 hoặc x + 1 = 0

<=> x = -2 hoặc x = -3 hoặc x = -1

d) x^3 + 9x^2 + 26x + 24 = 0

<=> (x^2 + 7x + 12)(x + 2) = 0

<=> (x + 3)(x + 4)(x + 2) = 0

<=> x + 3 = 0 hoặc x + 4 = 0 hoặc x + 2 = 0

<=> x = -3 hoặc x = -4 hoặc x = -2

15 tháng 6 2018

\(4x^4-11x^2+6=0\)

\(\Leftrightarrow4x^4-8x^2-3x^2+6=0\)

\(\Leftrightarrow4x^2\left(x^2-2\right)-3\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(4x^2-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\\4x^2-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{2}\\x=\pm\sqrt{\frac{3}{4}}\end{cases}}\)

\(S=\left\{\pm\sqrt{2};\pm\sqrt{\frac{3}{4}}\right\}\)

nếu có sai  bn thông cảm nha

16 tháng 3 2017

x~-0.017

16 tháng 3 2017

x~-0.017

8 tháng 1 2017

ta có x3-6x2+11x-6=0

hay x3-x2-5x2-+5x+6x-6=0

=>x(x-1) - 5x(x-1)+6(x-1)=0

(x-1).(x-5x+6)=0 <=> (x-1)(x2-2x-3x+6)=0

(x-1)(x(x-2)-3(x-2)=0

(x-1)(x-2)(x-3)=0 <=> x-1=0 hoặc x-2=0 hoặc x-3=0

<=> x=1 hoặc x=2 hoặc x=3

vậy S ={1;2;3}

15 tháng 6 2018

Đặt \(a=x^2\)

\(\Rightarrow4a^2-11a+6=0\)

ta có: \(\Delta=11^2-4.4.6=121-96=25>0\)

=> Phương trình có 2 nghiệm phân biệt: \(a1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{11+\sqrt{25}}{2.4}=\frac{16}{8}=2\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

                                                                 \(a2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{11-\sqrt{25}}{2.4}=\frac{6}{8}=\frac{3}{4}\)\(\Leftrightarrow x^2=\frac{3}{4}\Leftrightarrow x=\pm\sqrt{\frac{3}{4}}\)

18 tháng 6 2018

\(\frac{3}{5}-\sqrt{16}+\sqrt{0,16}+\sqrt{\frac{3}{52}}-\sqrt{\left(-5,5\right)^2}\)