Tính bằng cách hợp lí
\(\frac{1}{15}\)+\(\frac{1}{35}\)+\(\frac{1}{63}\)+\(\frac{1}{99}\)+ ....................+\(\frac{1}{2915}\)+\(\frac{1}{3135}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/5.7+1/7.9+1/99.11+...+1/13.15
=1/2(2/5.7+2/7.9+...+2/13.15)
=1/2.(1/2-1/15)
=1/2.13/30
=13/60
ta có :
B = 1 / 5 x 7 + 1 / 7 x 9 + 1 / 9 x 11 + ... + 1 / 13 x 15
2 x B = 2 / 5 x 7 + 2 / 7 x 9 + 2 / 9 x11 + ... + 2 / 13 x 15
2 x B = 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1 /13 - 1/15
2 x B = 1/5 - 1/15
2 x B = 3 / 15 - 1/15
2 x B = 2/15
B = 2 / 15 : 2
B = 1/15
vậy B = 1/15
Đặt \(A=1\frac{7}{15}-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}-\frac{1}{143}-\frac{1}{195}\)
\(\Rightarrow A=\frac{22}{15}-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\right)\)
Đặt \(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(\Rightarrow B=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\)
\(\Rightarrow2B=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\right)\)
\(\Rightarrow2B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(\Rightarrow2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(\Rightarrow2B=1-\frac{1}{15}\)
\(\Rightarrow2B=\frac{14}{15}\)
\(\Rightarrow B=\frac{14}{15}:2\Rightarrow B=\frac{7}{15}\)
\(\Rightarrow A=\frac{22}{15}-\frac{7}{15}\Rightarrow A=\frac{15}{15}=1\)
Ta có:
A=5/15+5/35+5/63+5/99+...+5/2915
=>A=5/3.5+5/5.7+5/7.9+5/9.11+...+5/53.55
=>A=5/2.(2/3.5+2/5.7+2/7.9+2/9.11+...+2/53.55)
=>A=5/2.(2/3-2/5+2/5-2/7+2/7-2/9+2/9-2/11+...+2/53-2/55)
=>A=5/2.(2/3-2/55)
=>A=5/2.104/165
=>A=52/33
Vậy A=52/33
OK!
Ta có:
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{2915}+\frac{1}{3135}\)
Coi \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}+\frac{1}{55.57}\)
\(\Rightarrow2A=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{53.55}+\frac{2}{55.57}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)
\(=\frac{1}{3}-\frac{1}{57}\)
\(=\frac{19}{57}-\frac{1}{57}=\frac{18}{570}=\frac{6}{19}\)
\(\Rightarrow A=\frac{6}{19}:2=\frac{3}{19}\)
Vậy tổng trên bằng \(\frac{3}{19}\)
Dấu \(.\)là dấu nhân
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{2}.\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}+\frac{2}{195}\right)\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\frac{14}{15}\)
\(=\frac{7}{15}\)
~ Ủng hộ nhé
Đặt \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\)
Suy ra ; \(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}=\frac{14}{15}\)
=> A = \(\frac{14}{15}:2=\frac{14}{15}.\frac{1}{2}=\frac{7}{15}\)
A=1/3.5+1/5.7+1/7.9+...+1/99.101
2A= 2/3.5+2/5.7+2/7.9+...+2/99.101
2A= 1/3-1/5+1/5-1/7-1/7+1/7-1/9+...+1/99-1/101
2A=1/3-1/101=98/303
A=(98/303)/2=49/303
Đăt S=1/15+1/35+1/63+1/99+...+1/2915+1/3135
=1/3.5+1/5.7+1/7.9+1/9.11+...+1/53.55+1/55.57
=1/2(2/3.5+2/5.7+2/7.9+...+2/53.55+2/55.57)
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/53-1/55+1/55-1/57)
=1/2(1/3-1/57)
=1/2(19/57-1/57)
=1/2.18/57
=3/19
Vậy 1/15+1/35+1/63+1/99+...+1/2915+1/3135=3/19
Mik viết thế này mong bạn thông cảm nha!!
chúc bạn hok tốt!!
Bạn nhớ k cho mik một cái đúng nha!!
Đặt \(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{2915}+\frac{1}{3135}\)
\(\Leftrightarrow A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+....+\frac{1}{53\cdot55}+\frac{1}{55\cdot57}\)
\(\Leftrightarrow2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+...+\frac{2}{53\cdot55}+\frac{2}{55\cdot57}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-....+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)
\(\Leftrightarrow2A=\frac{1}{3}-\frac{1}{57}=\frac{6}{19}\)
\(\Leftrightarrow A=\frac{6}{19}:2=\frac{3}{19}\)