K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Còn tính đoạn thẳng AE đâu bạn

16 tháng 4 2020

Bạn đọc kĩ lại bài mk đi bạn ơiii

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.a) Tính các tỷ số số AB/ BC và  BC/CDb) Chứng minh BC2 = AB.CD2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.a) Tính tỉ số AB/CDb) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai...
Đọc tiếp

Bài 1: 1) Trên tia Ax lấy các điểm B, C, D  theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.

a) Tính các tỷ số số AB/ BC và  BC/CD

b) Chứng minh BC2 = AB.CD

2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.

a) Tính tỉ số AB/CD

b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD 

Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.

a) Chứng minh AD/BD = AE/EC

b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.

Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.

a) Chứng minh AD/AB = AE/AC

b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC

Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:

a) Tỷ số DE/AE

b) Độ dài các đoạn thẳng AE, DE và AD.

Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC

b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.

0

a: Xét ΔABC có DM//BC

nên \(\dfrac{AD}{AB}=\dfrac{AM}{AC}\)

=>\(\dfrac{AM}{AC}=\dfrac{1}{3}\)

=>\(\dfrac{2}{AC}=\dfrac{1}{3}\)

=>AC=6(cm)

Xét ΔABC có DM//BC

nên \(\dfrac{DM}{BC}=\dfrac{AD}{AB}\)

=>\(\dfrac{4}{BC}=\dfrac{1}{3}\)

=>\(BC=3\cdot4=12\left(cm\right)\)

b: bạn ghi lại đề nha bạn

a: BD=10-6=4cm

Xét ΔABC có DE//BC

nên AD/DB=AE/EC

=>AE/EC=3/2

b: AE/EC=3/2

=>2AE-3EC=0

mà AE-EC=3

nên AE=9cm; EC=6cm

=>AC=15cm

Xét ΔCAB và ΔCED có

\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)

\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)

Do đó: ΔCAB đồng dạng với ΔCED

=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)

=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)

=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)

  • nguyenquynhanh14012010
  • 09/04/2020

Đáp án:

Giải thích các bước giải:

 Xét ΔABC có DE//BC (gt)

→ADABADAB = AEACAEAC  (dl Talet)

→AE=ADABADAB.AC=5,3 (cm)

Xét ΔABC có ∠BAC=90 độ

→AB²+AC²=BC² (dl Pyttago)

→6²+8²=BC²

→BC=√100=10 (cm)

Xét ΔABC có DE//BC (gt)

→ADABADAB = DEBCDEBC  (hệ quả dl Talet)

→DE=ADABADAB.BC=6,6 (cm)

Bạn tham khảo nhé