Tìm điều kiện xác định
A=x/x-2 + x-1/x
Giúp mình với cần gấppp 😘
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(x>0\)
b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)
\(=x+\sqrt{x}-2\sqrt{x}-1+1\)
\(=x-\sqrt{x}\)
a, ĐKXĐ: \(x\ne0;x\ne\pm1\)
\(P=\left(\frac{2x}{x^2-1}+\frac{x-1}{2x+2}\right):\frac{x+1}{2x}=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(=\left(\frac{2x.2}{2\left(x-1\right)\left(x+1\right)}+\frac{\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}:\frac{x+1}{2x}=\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}=\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{2x}{x+1}=\frac{x}{x-1}\)
b,Để \(P=2\Leftrightarrow\frac{x}{x-1}=2\Leftrightarrow2\left(x-1\right)=x\Leftrightarrow2x-2-x=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tmđk\right)\)
Vậy để P=2 <=> x=2
8: DKXĐ: x-1>=0 và 2-2x>=0
=>x>=1 và x<=1
=>x=1
9: ĐKXĐ: x^2-1>=0 và 4-4x^2>=0
=>x^2>=1 và x^2<=1
=>x^2=1
=>x=1 hoặc x=-1
10: ĐKXĐ: x-1>=0 và 3-x>=0
=>1<=x<=3
a/ ĐK x-1 khác 0 ; x^2+x khác 0 ; x^3-x khác 0 ; 1-x^2 khác 0
=> x khác {1;0;-1}
b/ \(B=\frac{1}{x-1}-\frac{x^3-x}{x^2+x}.\left(\frac{1}{x^2-2x+1}+\frac{1}{1-x^2}\right)\)
\(=\frac{1}{x-1}-\frac{x\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}.\left(\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(1+x\right)\left(1-x\right)}\right)\)
\(=\frac{1}{x-1}-\left(x-1\right).\left(\frac{1+x-x+1}{\left(x-1\right)^2\left(1+x\right)}\right)=\frac{1}{x-1}-\frac{1}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+1-1}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x^2-1}\)
a.
(x^2-4) / (9x^2- 16)
để phân thức được xác định khi chỉ khi 9x^2 khác 16
hay x^2 khác 16/9 suy ra x khác ±4/3
b.
(2x-1) / (x^2 -4x +4)
= (2x -1)/(x - 2)^2
để phân thức được xác định khi chỉ khi (x - 2)^2 khác 0
hay x khác 2
c.
(x^2 -4) / (x^2+1)
vì x^2 >= 0 với mọi x
suy ra x^2 + 1 >= 1 > 0 với mọi x
suy ra phân thức xác định với mọi x thuộc R
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}\)
Biểu thức \(A\) có nghĩa khi \(\hept{\begin{cases}\sqrt{x}+1\ne0;\text{ }x\ge0\\\sqrt{x}-1\ne0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có:
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}-1\right)-2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\frac{x+\sqrt{x}-2\sqrt{x}+2-2\sqrt{x}-2}{x-1}=\frac{x-3\sqrt{x}}{x-1}\)
Vậy, \(A=\frac{x-3\sqrt{x}}{x-1}\)
\(x\ne\left(0,2\right)\)
sai bét