đa thức 0 có bâc k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(f\left(x\right)=\left(x+1\right)P\left(x\right)-x\).
Khi đó \(f\left(k\right)=0\)với mọi \(k=0,1,2,...,2018\)mà \(P\left(x\right)\)có bậc \(2018\)nên \(f\left(x\right)\)có bậc \(2019\)
mà \(f\left(x\right)=0\)tại \(2019\)giá trị nên \(f\left(x\right)=ax\left(x-1\right)\left(x-2\right)...\left(x-2018\right)\).
Với \(x=-1\): \(a.\left(-1\right)\left(-2\right)...\left(-2019\right)=\left(-1+1\right)P\left(-1\right)-\left(-1\right)\)
\(\Leftrightarrow a=-\frac{1}{2019!}\).
\(P\left(2019\right)=\frac{f\left(2019\right)+2019}{2020}=\frac{-1+2019}{2020}=\frac{1009}{1010}\)
Với \(k\left(-1\right)=a.\left(-1\right)^2-b+c=a-b+c\left(1\right)\)
\(k\left(-2\right)=a.\left(-2\right)^2-2b+c=4a-2b+c\left(2\right)\)
từ đó suy ra \(k\left(-1\right).k\left(-2\right)=\left(a-b+c\right)\left(4a-2b+c\right)\)
thêm đề đi bạn hình như thiếu rồi
\(\Leftrightarrow A\left(x\right)=\left(n+p\left(k-1\right)\right)x+m\)
\(\left\{{}\begin{matrix}A\left(0\right)=\left[n+p\left(k-1\right)\right].0+m=5\Rightarrow m=5\\A\left(1\right)=\left[n+p\left(k-1\right)\right].1+5=2\\A\left(2\right)=\left[n+p\left(k-1\right)\right].2+5=7\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\end{matrix}\) (I)\(\left(2\right)and\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}n+p\left(k-1\right)=-3\\n+p\left(k-1\right)=1\end{matrix}\right.\) (ii)
(ii) vô nghiệm không tồn tại đa thức A(x) thỏa mãn yêu cầu bài toán
Đa thức 0 thì ko cs bậc
hok tot!
Đa thức 0 có bậc không ?
Đa thức 0 thì không có bậc
k cho mk nha