CMR: với n > 3 thì 3 n - 8 và n - 3 là 2 số nguyên tố cùng nhau.
Giúp mk vs ạ pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt UCLN(2n + 3 ; 4n + 8) = d
2n +3 chia hết cho d => 4n + 6 chia hết cho d
< = > [(4n+8)-(4n + 6] chia hết cho d
2 chia hết cho d mà 2n + 3 là số lẻ
=> d = 1
Vậy (2n + 3 ; 4n +8) = 1
gọi UCLN(2n+3;4n+8) là d
=>2n+3 chia hết cho d =>2(2n+3) chia hết cho d=>4n+6 chia hết cho d
4n+8 chia hết cho d
=>(4n+8)-(4n+6) chia hết cho d
=>2 chia hết cho d
=>d thuộc{1;2}
mà 2n+3 là số lẻ nên d ko thể là 2, vậy d=1
=>UCLN(2n+3;4n+8)=1
vậy 2n+3 và 4n+8 nguyên tố cùng nhau
a) Giả sử \(2n+3;4n+8\) chưa nguyên tố cùng nhau
\(\Leftrightarrow2n+3;4n+8\)có ước chung là số nguyên tố
Gọi \(d=ƯC\left(2n+3;4n+8\right)\)
\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Leftrightarrow2⋮d\)
Vì \(d\in N;2⋮d\Leftrightarrow d=1;2\)
+) \(d=2\Leftrightarrow2n+3⋮2\) (vô lí)
\(\Leftrightarrow d=1\)
\(\Leftrightarrow2n+3;4n+8\)nguyên tố cùng nhau với mọi n
Câu b tương tự
Chúc b hc tốt!
a)Gọi UCLN của 2n+3 và 4n+8 là d (d thuộc N*)
=>\(\hept{\begin{cases}2n+3\\4n+8\end{cases}}\)cùng chia hết cho d
=>(4n+8)-(2n+3) chia hết cho d
=>(4n+8)-2(2n+3) chia hết cho d
=>4n+8-4n-6 chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư của 2
=>\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)
Có 2n+3 chia hết cho d
Mà 2n+3 là số lẻ nên d không thể = 2 (ước của số lẻ không =2)
=>d=1
=>UCLN(2n+3;4n+8)=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(2n+3,4n+8)là d
Ta có :
2n+3 chia hết cho d
suy ra 4n+6 chia hết cho d
suy ra : (4n+8)-(4n+6)chia hết cho d
suy ra : 2 chia hết cho d
suy ra d thuộc Ư(2)
Ư(2)=1,2
Vì 2n+3 chia hết cho d,mà 3 lẻ,suy ra d lẻ
suy ra d=1
vậy ƯCLN(2n+3,4n+8)=d=1
vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
tick nhé
Không biết thế này có đúng không nhưng mình vẫn muốn hỏi
Gọi d là WCLN(2n+3, 3m+4); n thuộc N
Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d
3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d
nên (6m+9-6n+8)
=> d chia hết cho 1
=> d=1
Gọi d là ƯC ( 7n + 10 ; 5n + 7 )
=> 7n + 10 ⋮ d => 5.( 7n + 10 ) ⋮ d => 35n + 50 ⋮ d
=> 5n + 7 ⋮ d => 7.( 5n + 7 ) ⋮ d => 35n + 49 ⋮ d
=> [ ( 35n + 50 ) - ( 35n + 49 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 7n + 10 ; 5n + 7 ) = 1 nên 7n + 10 và 5n + 7 là nguyên tố cùng nhau
Câu b làm tương tự
Sai đề:
Nếu n = 1 thì n + 3 = 4 và n + 5 = 6 không phải hai số nguyên tố cùng nhau
3n - 8 và n - 3 nguyên tố cùng nhau
gọi a = ƯCLN ( 3n - 8 ; n - 3)
ta có : 3n - 8 \(⋮\)a n - 3 \(⋮\)a
3 . (n - 3) = 3n - 9 \(⋮\)a => (3n - 9) - (3n - 8) = 3n - 9 - 3n + 8 = (3n - 3n) + (9 - 8) = 0 + 1 \(⋮\)a
mà UCLN là 1 thì hai số 3n - 8 và n - 3 nguyên tố cùng nhau