Tam giác ABC có AB< AC. Gọi d là đường trung trực của BC. E là giao điểm của d với AC.
Gọi K là 1 điểm bất kì thuộc d (K khác E). So sánh chu vi tam giác AKB và AEB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là giao điểm của đường trung trực của BC với BC . Nối KC
Ta có tam giác EIC = tam giác EIB ( c.g.c )
=> CE = BE ( hai cạnh tương ứng )
chu vi tam giác AEB = AE + AB + BE = AE + AB + CE ( do BE = CE )
=> chu vi tam giác ABE = AB + AC ( do AE + CE = AC )
tam giác KIB = tam giác KIC ( c.g.c )
=> KB = KC ( hai cạnh tương ứng )
chu vi tam giác AKB = AK + BK + AB = AK + KC + AB ( do BK = CK )
xét tam giác ACK theo bất đẳng thức tam giác ta có
AK + CK > AC
=> AK + CK + AB > AC + AB
=> chu vi tam giác ABK > chu vi tam giác ABE
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC
Ta có NHC = ABC (cùng phụ với HCB) (1)
Vì ABDC là tứ giác nội tiếp nên ABC = ADC (2)
Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra
∆ADC = ∆AEC (c.c.c) => ADC = AEC (3)
Tương tự ta có AEK = ADK
Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o
Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)