K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

a) \(5\sqrt{25a^2}-25=25\left|a\right|-25==-25a-25\left(a< 0\right)\)

b) \(\sqrt{49a^2}+3a=7\left|a\right|+3a=-7a+3a\left(a< 0\right)=-4a\)

c) \(3\sqrt{9a^6}=9\left|a^3\right|-6a^3\)

Xét \(a\ge0\Rightarrow9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)

Xét \(a< 0\Rightarrow9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)

19 tháng 7 2021

a) 5\(\sqrt{25a^2}\) - 25 với a < 0

= 5\(\sqrt{\left(5a\right)^2}\) - 25

= 5.\(\left|5a\right|\) - 25

= 5.-(5a) - 25 

= -25a - 25 Vì a < 0

b) \(\sqrt{49a^2}\) + 3a với a < 0

\(\sqrt{\left(7a\right)^2}\) + 3a

\(\left|7a\right|\) + 3a

= -7a + 3a Vì a < 0

= -4a

c) 3\(\sqrt{9a^6}\) - 6a3 với a bất kì

= 3\(\sqrt{\left(3a^3\right)^2}\) - 6a3

= 3\(\left|3a^3\right|\) - 6a3

= 9a3 - 6a3

= 3a3

 Chúc bạn học tốt

b: B=căn 49a^2+3a

=|7a|+3a

=7a+3a(a>=0)

=10a

c: C=căn16a^4+6a^2

=4a^2+6a^2

=10a^2

d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)

TH1: a>=0

D=6a^3-6a^3=0

TH2: a<0

D=-6a^3-6a^3=-12a^3

e: \(E=3\sqrt{9a^6}-6a^3\)

\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)

=3*3a^3-6a^3(a>=0)

=3a^3

f: \(F=\sqrt{16a^{10}}+6a^5\)

\(=\sqrt{\left(4a^5\right)^2}+6a^5\)

=-4a^5+6a^5(a<=0)

=2a^5

8 tháng 11 2021

a) \(=5\left|a\right|+3a=5a+3a=8a\)

b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)

c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)

8 tháng 11 2021

làm chi tiết cho em câu b đi ạ

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

a)

$5\sqrt{25a^2}-25a=5\sqrt{(5a)^2}-25a=5|5a|-25a$

Với $a\leq 0$ thì $|5a|=-5a$. Do đó:

$5\sqrt{25a^2}-25a=-25a-25a=-50a$

b)

$\sqrt{16a^4}+6a^2=\sqrt{(4a^2)^2}+6a^2=|4a^2|+6a^2=4a^2+6a^2=10a^2$

6 tháng 6 2019

\(\sqrt{16a^4}+6a^2=\sqrt{16\left(a^2\right)^2}+6a^2=4a^2+6a^2=10a^2\)

(vì a2 ≥ 0 ∀ a)

\(3\sqrt{9a^6}-6a^3=3\sqrt{9\left(a^3\right)^2}-6a^3=9\left|a^3\right|-6a^3\)

(vì a3 có thể là số âm, dương hoặc bằng 0 tùy thuộc vào giá trị của a nên đặt trong dấu GTTĐ)

Có 2 trường hợp:

+ T/h 1: a ≥ 0 ta có \(9\left|a^3\right|-6a^3=9a^3-6a^3=3a^3\)

+ T/h 2: a < 0 ta có \(9\left|a^3\right|-6a^3=-9a^3-6a^3=-15a^3\)

( dấu trừ ở trước số 9a3 là kí hiệu số đối nha)

Y
6 tháng 6 2019

+ \(\sqrt{16a^4}+6a^2\)

\(=4a^2+6a^2=10a^2\)

+ \(3\sqrt{9a^6}-6a^3\)

\(=3\left|3a^3\right|-6a^3\)

\(=\left\{{}\begin{matrix}9a^3-6a^3=3a^3vớia\ge0\\-9a^3-6a^3=-15a^3vớia< 0\end{matrix}\right.\)