Cho tam giác ABC cân tại A. Trên các cạnh AB, BC, CA lần lượt lấy các điểm D, M, E sao cho DME=B. Chứng minh rằng các tam giác BDM và CME đồng dạng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì chú tự vẽ nhé, anh đây mệt lắm.
Xét góc BMC có:
góc DMB + góc EMC = 180 độ - góc DME (1)
Xét tam giác BDM có:
góc BDM + góc DMB = 180 độ - góc B (2)
Mà góc B = góc DME (3)
Từ (1), (2), (3) => góc EMC = góc BDM
Xét tam giác BDM và tam giác CME có:
góc EMC = góc BDM (cmt)
góc B = góc C (tam giác ABC cân tại A)
=>tam giác BDM~tam giác CME (g - g)
a) Ta có : Góc MDB = góc CME (gt) ; Góc B = góc C (tam giác ABC cân tại A)
=> \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\) hay \(\frac{BM}{CE}=\frac{BD}{BM}\) ( M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) Ta có : Góc BMD = góc MEC (tam giác DBM và MCE đồng dạng)
Mà BME là góc ngoài tam giác MEC => góc BMD + góc DME = góc MEC + góc MCE = góc BMD + góc MCE
=> Góc DME = góc MCE = góc MBA (1)
Từ \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\) hay \(\frac{DM}{ME}=\frac{MC}{CE}\) (2)
Từ (1) và (2) suy ra \(\Delta DME~\Delta MCE\left(c.g.c\right)\) mà \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\Delta DBM~\Delta DME\)
Vậy ta có điều phải chứng minh.
1)
∆BDM có BDM + DBM + BMD = 180°
BMD + DME + CME = 180°
DME = DBM
Nên BDM = CME
2) ∆BMD ~ ∆CEM (g.g)
Ta có: tam giác ABC cân tại A
=>^B=^C
Mà ^B=^DME
Suy ra: ^C=^DME
Mặt khác: ^BME=^BMD+^DME=^MEC+^C(góc ngoài của tam giác MEC)
Suy ra: ^BMD=^MEC
Xét tam giác BMD và tam giác CEM có:
^B=^C(gt)
^BMD=^MEC(cmt)
Do đó: ΔBMD~ΔCEM(g.g)
Suy ra: BMCE =BDCM ⇔BM·CM=CE·BD
Vì BM,CM không đổi (vì BM=CM) nên BM.CM không đổi
Vậy BD.CE không đổi