Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)
\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)
\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)
\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)
a)
\(\begin{array}{l}\,\,\,\,\,\,\,\frac{{5x - 2}}{3} = \frac{{5 - 3x}}{2}\\\frac{{2\left( {5x - 2} \right)}}{6} = \frac{{3\left( {5 - 3x} \right)}}{6}\\\,2\left( {5x - 2} \right) = 3\left( {5 - 3x} \right)\\\,\,\,\,\,\,10x - 4 = 15 - 9x\\\,\,\,10x + 9x = 15 + 4\\\,\,\,\,\,\,\,\,\,\,\,\,\,19x = 19\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 19:19\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1.\end{array}\)
Vậy phương trình có nghiệm \(x = 1\).
b)
\(\begin{array}{l}\,\,\,\,\,\,\frac{{10x + 3}}{{12}} = 1 + \frac{{6 + 8x}}{9}\\\frac{{3\left( {10x + 3} \right)}}{{36}} = \frac{{36}}{{36}} + \frac{{4\left( {6 + 8x} \right)}}{{36}}\\\,3\left( {10x + 3} \right) = 36 + 4\left( {6 + 8x} \right)\\\,\,\,\,\,\,\,30x + 9 = 36 + 24 + 32x\\\,\,\,\,\,\,\,30x + 9 = 60 + 32x\\\,30x - 32x = 60 - 9\\\,\,\,\,\,\,\,\,\,\,\,\,\, - 2x = 51\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \frac{{51}}{2}.\end{array}\)
Vậy phương trình có nghiệm \(x = - \frac{{51}}{2}\).
c)
\(\begin{array}{l}\,\,\,\,\,\,\,\,\,\,\,\,\,\frac{{7x - 1}}{6} + 2x = \frac{{16 - x}}{5}\\\frac{{5\left( {7x - 1} \right)}}{{30}} + \frac{{30.2x}}{{30}} = \frac{{6\left( {16 - x} \right)}}{{30}}\\\,\,5\left( {7x - 1} \right) + 30.2x = 6\left( {16 - x} \right)\\\,\,\,\,\,\,\,\,\,\,35x - 5 + 60x = 96 - 6x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,95x - 5 = 96 - 6x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,95x + 6x = 96 + 5\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,101x = 101\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 101:101\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1\end{array}\)
Vậy phương trình có nghiệm \(x = 1\).
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
\(\frac{3x-7}{5}=\frac{2x-1}{3}\)
\(\Leftrightarrow9x-21=10x-5\)
\(\Leftrightarrow-x=16\Leftrightarrow x=-16\)
\(\frac{4x-7}{12}-x=\frac{3x}{8}\)
\(\Leftrightarrow\frac{4x-7-12x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow\frac{-7-8x}{12}=\frac{3x}{8}\)
\(\Leftrightarrow-56-64x=36x\)
\(\Leftrightarrow-56=100x\Leftrightarrow x=\frac{-14}{25}\)
\(\frac{x-2009}{1234}+\frac{x-2009}{5678}-\frac{x-2009}{197}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)=0\)
Vì \(\left(\frac{1}{1234}+\frac{1}{5678}-\frac{1}{197}\right)\ne0\)nên x - 2019 = 0
Vậy x = 2019
\(\frac{5x-8}{3}=\frac{1-3x}{2}\)
\(\Leftrightarrow10x-16=3-9x\)
\(\Leftrightarrow19x=19\Leftrightarrow x=1\)
b) \(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
=> \(\left(\frac{x-90}{10}-1\right)+\left(\frac{x-76}{12}-2\right)+\left(\frac{x-58}{14}-3\right)+\left(\frac{x-36}{16}-4\right)+\left(\frac{x-15}{17}-5\right)=0\)
=> \(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=> \(\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
Vì \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x - 100 = 0
=> x = 100
cậu nói thế nghe dễ quá hen
\(\frac{x+3}{12}+\frac{2x+46}{16}=\frac{3x+9}{36}+\frac{5x+81}{6}\Leftrightarrow\frac{2\left(x+3\right)}{24}+\frac{\frac{3}{2}\left(2x+46\right)}{\frac{3}{2}.16}=\frac{\frac{2}{3}\left(3x+9\right)}{\frac{2}{3}.36}+\frac{4\left(5x+81\right)}{4.6}\)
\(\Leftrightarrow\frac{2\left(x+3\right)}{24}+\frac{3x+69}{24}=\frac{2x+6}{24}+\frac{20x+324}{24}\)\(\Leftrightarrow2x+6+3x+69=2x+6+20x+324\Leftrightarrow17x=-255\Leftrightarrow x=-\frac{255}{17}\)Vậy \(x=-\frac{255}{17}\)