Chứng tỏ rằng : 1/1.2+1/2.3+1/3.4+...+1/49+50<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\frac{49}{50}x=\frac{49}{50}\)
\(x=\frac{\frac{49}{50}}{\frac{49}{50}}\)
\(x=1\)
Vậy \(x=1\)
1/1.2+1/2.3+...+1/49.50
=1/1-1/50
=49/50 bé hơn 1 nên cái đó bé hơn 1
1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+...+1/50
=1/1-1/2+1/3-1/4+...+1/49-1/50
=(1/1+1/3+...+1/49)-(1/2+1/4+...+1/50)
=(1/1+1/2+1/3+...+1/49+1/50)-2(1/2+1/4+...+1/50)
=1/1+1/2+1/3+...+1/50-1-1/2-1/3-...-1/25
=1/26+1/27+...+1/50 (đpcm)
1/1.2 + 1/2.3 + ...... + 1/49.50
= 1/1 - 1/2 + 1/2 - - .... - 1/50 = 1 - 1/50 = 49/50
\(A=\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\frac{1}{1}-\frac{1}{50}\)
\(A=\frac{49}{50}\)
Vì \(\frac{245}{420}< \frac{245}{294}< \frac{245}{250}\)
Vậy \(\frac{7}{12}< \frac{49}{50}< \frac{5}{6}\)
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+............+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+..........+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+.........+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+.....+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+.........+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+....+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
1/1.2 +1/2.3 +1/3.4 +...+ 1/49.50
=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
=1-1/50<1
1/1.2 + 1/2.3 +1/3.4 + ... + 1/49.50 ( chỗ này 49.50 chứ ko phải 49+50 đâu nha)
= 1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50 (-1/2+1/2 là hết cứ như z thì chỉ còn lại 1-1/50)
=1-1/50 <1