Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!
Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB.
a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CF
b) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADC
c) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt dựng các đường | thẳng song song với BF cắt CO tại J và cắt AD tại I.
+ Chứng tỏ FC/FA = CI/JA
+ Chứng tỏ DB/DC = FC/FA = EA/EB=1
a) xét tam giác ABF zà tam giác ACB có
BAC chung
ABF= ACB (gt)
=> tam giác ABF= tam giác ACB (g.g)
\(=>\frac{AF}{AB}=\frac{AB}{AC}=>\frac{AF}{AB}=\frac{4}{8}=>AF=2\)
ta có AF+FC=AC
=> 2+FC=8
=>FC=6
b) D là trung điểm của BC ( AD là trung tuyến của tam giác ABC
=>\(DC=\frac{1}{2}BC\)
kẻ đường cao AH
ta có \(\frac{S_{ABC}}{S_{ADC}}=\frac{\frac{1}{2}.AH.AB}{\frac{1}{2}.AH.DC}=\frac{AB}{DC}=\frac{AB}{\frac{1}{2}AB}=2\)
\(=>S_{ABC}=2S_{ADC}\)
c) tam giác CKA có OF//KA nên theo đ/l ta lét có
\(\frac{FC}{FA}=\frac{OC}{OK}\left(1\right)\)
tam giác OCI có KA//CI nên theo hệ quả đ/l ta lét ta có
\(\frac{OC}{OK}=\frac{CI}{KA}\left(2\right)\)
từ 1 zà 2 \(=>\frac{FC}{FA}=\frac{CI}{KA}\)
lại câu c nhé
c) ta có Cx//BF nên theo đ.l ta lét ta đc
\(\frac{FC}{FA}=\frac{OI}{OA}\)
Cx//AY( hệ quả ta lét )=>\(\frac{OI}{OA}=\frac{CJ}{JA}\Leftrightarrow\frac{FC}{FA}=\frac{CI}{JA}\)
tương tự ta có
\(\frac{DB}{DC}=\frac{BO}{CI}\left(hệ\right)quả\)
\(\frac{FC}{FA}=\frac{CI}{JA}\left(cmt\right)\)
mặt khác Ay//FB ta có
\(\frac{EA}{EB}=\frac{JA}{BO}=>\frac{DB}{DC}.\frac{FC}{FA}.\frac{EA}{EB}=\frac{BO}{CI}.\frac{CI}{JA}.\frac{JA}{BO}=1\)(dpcm)