cho x,y là các số không âm t/m x^3+y^3=2.C/m x^2+y^2 lớn hơn hoặc bằng 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(x^2-2xy+x-2y\le0.\)
\(\Leftrightarrow\left(x-2y\right)\left(x+1\right)\le0\)(1). Do x;y là các số thực không âm nên x + 1 >0 nên từ (1) => \(0\le x\le2y\)
Với mọi \(0\le x\le2y\)thì \(x^2+3x\le\left(2y\right)^2+3\left(2y\right)=4y^2+6y\)
Do đó, \(M=x^2-5y^2+3x\le4y^2-5y^2+6y=-y^2+6y-9+9=-\left(y-3\right)^2+9\le9\forall y\)
Vậy GTLN của M là: 9 khi y = 3 và x = 2y = 6.
\(x^2-2xy+x-2y\ge0\)
\(\Leftrightarrow x\left(x-2y\right)+x-2y\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2y\right)\ge0\)
\(\Leftrightarrow x\ge2y\)( vì x là số thực không âm nên x+1 >0 )
\(\Leftrightarrow0\le y\le\frac{x}{2}\)
\(\Leftrightarrow y^2\le\frac{x^2}{4}\)( do 2 vế không âm nên bình phương hai vế )
\(\Rightarrow M\le\frac{x^2+3x-5x^2}{4}=\frac{-x^2}{4}+3x=9-\left(3-\frac{x}{2}\right)^2\le9\)
Vậy Mmax=9 <=> x=6, y =3
Đề bài là thế này đúng không bạn:
Cho các số thực không âm x; y thỏa mãn: \(x^2+y^2\le2\)
Tìm GTLN của: \(P=\sqrt{29x+3y}+\sqrt{3x+29y}\)
P/s: bạn nên sử dụng tính năng gõ công thức để người khác dễ đọc hơn (đây là tính năng rất đơn giản, dễ dàng làm quen, nó nằm ở biểu tượng \(\sum\) trên khung soạn thảo)
đề sai nhá. thử số là biết