Cho trước một hình chữ nhật. Bạn An vẽ một hình chữ nhật có chiều dài tăng 17% và có chiều rộng giảm 10 % so với chiều dài và chiều rộng hình chữ nhật ban đầu. Bạn Bình vẽ một hình chữ nhật có chiều rộng tăng 17 % và có chiểu dài giảm 10 % so với hình chữ nhật ban đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng ban đầu của hình chữ nhật(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chiều dài hơn chiều rộng 5m nên ta có phương trình: a-b=5(1)
Diện tích ban đầu của hình chữ nhật là:
\(ab\left(m^2\right)\)
Vì khi giảm chiều dài đi 2m và tăng chiều rộng gấp đôi thì diện tích lớn hơn diện tích ban đầu 240m2 nên ta có phương trình:
\(\left(a-2\right)\cdot2b=ab+240\)
\(\Leftrightarrow2ab-4b=ab+240\)
\(\Leftrightarrow ab-4b=240\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\ab-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b\left(5+b\right)-4b=240\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\5b+b^2-4b=240\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\b^2+b-240=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b^2+16b-15b-240=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\b\left(b+16\right)-15\left(b+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left(b+16\right)\left(b-15\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b+16=0\\b-15=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+5\\\left[{}\begin{matrix}b=-16\left(loại\right)\\b=15\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Chiều dài ban đầu là 20m; Chiều rộng ban đầu là 15m
Gọi chiều rộng hcn ban đầu là :x(m)
->chiều dài hcn ban đầu là :2x(m)
->Diện tích hcn ban đầu là: \(x.2x=2x^2\)\(\left(m^2\right)\)
Sau khi thay đổi: chiều rộng là :x-1(m)
chiều dài là : 2x+3(m)
->Diện tích hcn sau khi thay đổi các kích thước là: \(\left(x-1\right)\left(2x+3\right)\left(m^2\right)\)
Vì sau khi thay đổi ,đc 1 hcn mới có diện tích tăng 7m2 so vs hcn ban đầu nên ta có phương trình:
\(2x^2+7=\left(x-1\right)\left(2x+3\right)\)
\(\Leftrightarrow\) \(2x^2+7=2x^2+3x-2x-3\)
\(\Leftrightarrow\) \(2x^2-2x^2-3x+2x=-3-7\)
\(\Leftrightarrow\) \(-x=-10\)
\(\Leftrightarrow\) \(x=10\)
Chiều rộng là 10m.->chiều dài là :2.10=20(m)
=> Diện tích hcn ban đầu là: 10.20=200(m2)
Vậy......................................................
nửa chu vi hình chữ nhật là:
150:2=75
chiều rộng là
75:(3+2)*2=30
chiều dài là
75-30=45
chiều rộng ban đầu là:
30-5=25
chiều dài ban đầu là:
75-25=50
d/s:chiều rộng 25
chiều dài 50
Câu hỏi của nguyễn thị kim ngân - Toán lớp 4 - Học toán với OnlineMath
em tham khảo nhé!
Gọi chiều rộng là x
Chiều dài là x+8
Theo đề, ta có: \(\left(x+3\right)\cdot\dfrac{6}{5}\left(x+8\right)=x\left(x+8\right)+120\)
\(\Leftrightarrow\dfrac{6}{5}\left(x^2+11x+24\right)=x^2+8x+120\)
\(\Leftrightarrow\dfrac{6}{5}x^2+\dfrac{66}{5}x+\dfrac{144}{5}-x^2-8x-120=0\)
\(\Leftrightarrow x^2\cdot\dfrac{1}{5}+\dfrac{26}{5}x-\dfrac{456}{5}=0\)
=>x=12
Vậy: Chiều rộng ban đầu là 12m
Chiều dài ban đầu là 20m
Gọi chiều rộng là x
Chiều dài là x+8
Theo đề, ta có: 1/5(x+8)(x+3)=x(x+8)+120
=>x=12
=>CHiều rộng và chiều dài ban đầu lần lượt là 12m và 20m
Gọi chiều rộng là x
Chiều dài là 2x
Theo đề, ta có: (2x-3)(x+2)=x2
=>2x2+4x-3x-6=x2
=>x2+x-6=0
=>(x+3)(x-2)=0
=>x=-3(loại) hoặc x=2(nhận)
Vậy: Chiều dài là 4m
Lời giải:
Giả sử độ dài chiều rộng HCN là aa (m) (a>2) thì độ dài chiều dài HCN là 2a (m)
Khi giảm mỗi chiều đi 22 (m), độ dài các cạnh hình chữ nhật còn lại a−2a−2 (m) và 2a−2 (m)
Diện tích ban đầu: S=a.2a=2a2 (m vuông)
Diện tích sau khi thay đổi kích thước: S′=(a−2)(2a−2)(m vuông)
Theo đề bài: S=2S′
⇔2a2=2(a−2)(2a−2)
⇔a2=(a−2)(2a−2)=2a2−6a+4
⇔a2−6a+4=0
⇒a=3±√5(m). Mà a>2nên a=3+√5 (m)
Do đó chiều dài HCN đã cho là: 2a=6+2√ (m)