tính tham số a sao cho phương trình -x + 9 = 5x - a nhận x = 1 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có x = 3
<=> -4.3 - 10 = 5.3 + a
<=> -22 = 15 + a
<=> a = -37
Vậy a = -37
xin lỗi mình nhẩm sai :v
\(\Leftrightarrow-12-10=15+a\Leftrightarrow-22=15+a\Leftrightarrow a=-37\)
Vậy a = -37 nếu x = 3
Thay x = 4 vào pt -5x - 7 = -x + a ta được:
-5 . 4 - 7 = -4 + a
\(\Leftrightarrow\) -27 = -4 + a
\(\Leftrightarrow\) a = -27 + 4
\(\Leftrightarrow\) a = -23
Vậy a = -23 nếu nhận x = 4 làm nghiệm của pt -5x - 7 = -x + a
Chúc bn học tốt!!
32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)
1:
\(A=\dfrac{9}{x-\sqrt{x}-2}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\dfrac{9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
\(=\dfrac{9+\left(2\sqrt{x}+5\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{9+2x-4\sqrt{x}+5\sqrt{x}-10-x+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2+2⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)
=>\(\sqrt{x}\in\left\{3;1;4;0\right\}\)
=>\(x\in\left\{9;1;16;0\right\}\)
2:
\(\text{Δ}=\left(-2m-3\right)^2-4m\)
\(=4m^2+12m+9-4m\)
\(=4m^2+5m+9\)
\(=\left(2m\right)^2+2\cdot2m\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{56}{16}\)
\(=\left(2m+\dfrac{5}{4}\right)^2+\dfrac{56}{16}>=\dfrac{56}{16}>0\)
=>Phương trình luôn có hai nghiệm phân biệt
\(x_1^2+x_2^2=9\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=9\)
=>\(\left(2m+3\right)^2-2m=9\)
=>\(4m^2+12m+9-2m-9=0\)
=>4m^2+10m=0
=>2m(2m+5)=0
=>m=0 hoặc m=-5/2
a. để phương trình nhận x=3 là nghiệm ta có
\(a\left(3+2\right)-a^2-2=0\Leftrightarrow a^2-5a+2=0\Leftrightarrow a=\frac{5\pm\sqrt{17}}{2}\)
b. Để phương trình có duy nhất 1 nghiệm âm ta có :
\(\hept{\begin{cases}a\ne0\\x=\frac{a^2-2a+2}{a}< 0\end{cases}\Leftrightarrow a< 0}\) do \(a^2-2a+2>0\forall a\)
c. Để phương trình đã cho vô nghiệm thì a=0
d. Phương trình đã cho không thể có vô số nghiệm thực.
Để \( -x + 9 = 5x - a\) nhận $x=1$ là nghiệm thì phương trình phải thỏa mãn \(-1+9=5.1-a\) \(\Leftrightarrow a=-3\)
Vậy \(a=-3\)
Bài làm
Vì nghiệm của phương trình trên là x = 1 nên phương trình trên sẽ thay x = 1.
Ta được: -1 + 9 = 5 . 1 - a
<=> 8 = 5 - a
<=> a = 5 - 8
<=> a = -3
Vậy a = -3 khi x = 1
# Học tốt #