Câu 1: Cho các đa thức:
f(x)=\(8x^{n+3}+2x^{n+2}-x^{n+1}+3x^n\)
g(x)=\(-8x^{n+3}-2x^{n+2}+x^{n+1}2x^n\left(n\in N\right)\)
với giá trị nào của x và n thì f(x)-g(x)=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) + g(x) = ( 8xn+3 + 2xn+2 - xn-1 + 3xn ) + ( -8xn+3 - 2xn+2 + xn+1 + 2xn )
= 8xn+3 + 2xn+2 - xn-1 + 3xn - 8xn+3 - 2xn+2 + xn+1 + 2xn
= 5xn
+, Nếu n = o và x # \(\Rightarrow\)xn = x0 = 1
+, Nếu n \(\in\)N và x = 1 \(\Rightarrow\)xn = 1n = 1
+, Nếu n = 2k và x = -1 \(\Rightarrow\)xn = -12k = 1
Sửa đề:
f(x) = 8xn+3 + 2xn+2 - xn+1 + 3xn
g(x) = -8xn+3 - 2xn+2 + xn+1 + 2xn
=> f(x) + g(x) = 5xn
Để f(x) + g(x) = 5 thì 5xn = 5
=> xn = 1
=> x = 1 và n = 1
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
a: \(P=-3x^3+5x\)
\(=x\cdot\left(-3x^2\right)+x\cdot5\)
\(=x\left(-3x^2+5\right)\)
b: \(Q=\left(2x-1\right)+\left(x-2\right)\left(2x-1\right)\)
\(=\left(2x-1\right)\left(1+x-2\right)\)
\(=\left(2x-1\right)\left(x-1\right)\)
c: \(R=4-16x^2\)
\(=4\cdot1-4\cdot4x^2\)
\(=4\left(1-4x^2\right)\)
\(=4\left(1-2x\right)\left(1+2x\right)\)
d: \(S=36-4x^2\)
\(=4\cdot9-4\cdot x^2\)
\(=4\left(9-x^2\right)\)
\(=4\left(3-x\right)\left(3+x\right)\)
e: \(T=8x^3-1\)
\(=\left(2x\right)^3-1^3\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right)\)
f: \(Q=8-x^3\)
\(=2^3-x^3\)
\(=\left(2-x\right)\left(4+2x+x^2\right)\)
g: \(N=64-x^3\)
\(=4^3-x^3\)
\(=\left(4-x\right)\left(16+4x+x^2\right)\)
Phân tích đa thức thành nhân tử:
a,f(x)=\(3x^4+2x^3-8x^2-2x+5\)
b,\(g\left(x\right)=4x^3+5x^2+5x+1\)
\(g\left(x\right)=4x^3+5x^2+5x+1\\ \Leftrightarrow g\left(x\right)=4x^3+x^2+4x^2+x+4x+1\\ \Leftrightarrow g\left(x\right)=\left(4x^3+x^2\right)+\left(4x^2+x\right)+\left(4x+1\right)\\ \Leftrightarrow g\left(x\right)=x^2\left(4x+1\right)+x\left(4x+1\right)+\left(4x+1\right)\\ \Leftrightarrow g\left(x\right)=\left(4x+1\right)\left(x^2+x+1\right)\)
1. a)
\(h\left(0\right)=1+0+0+....+0=1\)
\(h\left(1\right)=1+\left(1+1+....+1\right)\)
( x thừa số 1)
\(=x+1\)
Với x là số chẵn
\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)
Với x là số lẻ
\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0
b) Tương tự
F(x) + G(x) = x^n - 2x^n+1 - 3x^n+2 + 4x^n+3 + 2x^n+1 - 4x^n+3 + 3x^n+2 + 3x^n
= ( x^n + 3x^n) + ( -2x^n+1 + 2x^n+1) + (-3x^n+2 + 3x^n+2) + ( 4x^n+3 - 4x^nn+3)
= 4x^n
b) f(x) + g(x) = 4
=> 4x^n = 4
=> x^n = 1
(+) với n = 0 => x^0 = 1 luôn đúng với mọi x > 0
(+) n > 1 => x^n = 1 khi x = 0