giải giúp với ae
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
5.
\(A=\dfrac{x}{x+\sqrt{x+yz}}+\dfrac{y}{y+\sqrt{y+zx}}+\dfrac{z}{z+\sqrt{z+xy}}\)
\(=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}+\dfrac{y}{y+\sqrt{y\left(x+y+z\right)+zx}}+\dfrac{z}{z+\sqrt{z\left(x+y+z\right)+xy}}\)
\(=\dfrac{x}{x+\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{y+\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{z+\sqrt{z^2+xy+yz+zx}}\)
\(=\dfrac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{xy+yz+zx}+\dfrac{y\left(\sqrt{y^2+xy+yz+zx}-y\right)}{xy+yz+zx}+\dfrac{z\left(\sqrt{z^2+xy+yz+zx}-z\right)}{xy+yz+zx}\)
\(=\dfrac{x\sqrt{\left(x+y\right)\left(z+x\right)}-x^2}{xy+yz+zx}+\dfrac{y\sqrt{\left(x+y\right)\left(y+z\right)}-y^2}{xy+yz+zx}+\dfrac{z\sqrt{\left(z+x\right)\left(y+z\right)}-z^2}{xy+yz+zx}\)
Áp dụng BĐT \(ab\le\dfrac{a^2+b^2}{2}\) và BĐT \(a^2+b^2+c^2\ge ab+bc+ca\)
\(A=\dfrac{x\sqrt{\left(x+y\right)\left(z+x\right)}-x^2}{xy+yz+zx}+\dfrac{y\sqrt{\left(x+y\right)\left(y+z\right)}-y^2}{xy+yz+zx}+\dfrac{z\sqrt{\left(z+x\right)\left(y+z\right)}-z^2}{xy+yz+zx}\)
\(=\dfrac{x\sqrt{\left(x+y\right)\left(z+x\right)}+y\sqrt{\left(x+y\right)\left(y+z\right)}+z\sqrt{\left(z+x\right)\left(y+z\right)}-\left(x^2+y^2+z^2\right)}{xy+yz+zx}\)
\(\le\dfrac{x.\dfrac{2x+y+z}{2}+y.\dfrac{x+2y+z}{2}+z.\dfrac{x+y+2z}{2}-\left(x^2+y^2+z^2\right)}{xy+yz+zx}\)
\(=\dfrac{xy+yz+zx}{xy+yz+zx}=1\)
\(maxA=1\Leftrightarrow x=y=z=\dfrac{1}{3}\)
chịu thì không lại mất công gõ chư thôi ghi chịu làm gì
j giúp j ????
giải giúp với ae
Người ae
ở đây ko tải đc ảnh nhé!
học tốt