K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)

Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)

=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)

=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)

=> \(x^2-4x-2x+8-x-2=-2x\)

=> \(x^2-5x+6=0\)

=> \(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)

=> x = 3 .

Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)

b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)

Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)

=> \(x\left(x+12\right)=192\)

=> \(x^2+12x-192=0\)

=> \(x^2+2x.6+36-228=0\)

=> \(\left(x+6\right)^2=288\)

=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )

Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)

23 tháng 3 2020

AYUASGSHXHFSGDB HAGGAHAJF

13 tháng 3 2019

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2.ĐKXĐ:x\ne0\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}-x^2-2-\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2-8\left(x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)

\(\Leftrightarrow8\left(x^2+2+\frac{1}{x^2}-x^2+\frac{1}{x^2}\right)=\left(x+4\right)^2\)

\(\Leftrightarrow16=\left(x+4\right)^2\)

\(\Leftrightarrow x^2+8x+16=16\)

\(\Leftrightarrow x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=-8\left(n\right)\end{cases}}\)

V...\(S=\left\{-8\right\}\)

^^

13 tháng 3 2019

bạn ghi sai đề ở chỗ \(\left(x+\frac{1}{x}\right)^2\)chứ ko phải \(\left(x+\frac{1}{x^2}\right)^2\)nhé

27 tháng 4 2019

ĐK: x khác 0
Đặt \(x+\frac{1}{x}=a\)\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow a^2=x^2+\frac{1}{x^2}+2\cdot x\cdot\frac{1}{x}\Leftrightarrow a^2-2=x^2+\frac{1}{x^2}\)

Có:

\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)
\(=8a^2+4\left(a^2-2\right)^2-4\left(a^2-2\right)a^2\)
\(=8a^2+4\left(a^4-4a^2+4\right)-4\left(a^4-2a^2\right)\)
\(=8a^2+4a^4-16a^2+16-4a^4+8a^2=16\)

Thay \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=16\)

  vào phương trình, ta có:  \(\left(x-4\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=-4\\x-4=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}\)Mà điều kiện x khác 0 nên x=8

Vậy phương trình có nghiệm x=8