tìm giá trị lớn nhất của N= \(\frac{x}{2x-4\sqrt{x}+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm giá trị lớn nhất của
N=\(\dfrac{2x+5}{\sqrt{x}+1}\) khi x≥9
F=\(\dfrac{x+3}{\sqrt{x}+1}\) khi x≥4
Hai biểu thức này chỉ có min thui bạn nhé.
1.
\(N=\frac{2x+5}{\sqrt{x}+1}=\frac{2\sqrt{x}(\sqrt{x}+1)-2(\sqrt{x}+1)+7}{\sqrt{x}+1}=2\sqrt{x}-2+\frac{7}{\sqrt{x}+1}\)
\(=2(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}-4\)
\(=\frac{7}{16}(\sqrt{x}+1)+\frac{7}{\sqrt{x}+1}+\frac{25}{16}(\sqrt{x}+1)-4\)
\(\geq 2\sqrt{\frac{7}{16}.7}+\frac{25}{16}(\sqrt{9}+1)-4=\frac{23}{4}\) (theo BĐT AM-GM)
Vậy $N_{\min}=\frac{23}{4}$ khi $x=9$
2.
\(F=\frac{x+3}{\sqrt{x}+1}=\frac{\sqrt{x}(\sqrt{x}+1)-(\sqrt{x}+1)+4}{\sqrt{x}+1}=\sqrt{x}-1+\frac{4}{\sqrt{x}+1}\)
\(=\frac{4}{9}(\sqrt{x}+1)+\frac{4}{\sqrt{x}+1}+\frac{5\sqrt{x}}{9}-\frac{13}{9}\)
\(\geq 2\sqrt{\frac{4}{9}.4}+\frac{5\sqrt{4}}{9}-\frac{13}{9}=\frac{7}{3}\)
Vậy $F_{\min}=\frac{7}{3}$ khi $x=4$
Với các số thực không âm a; b ta luôn có BĐT sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)
Áp dụng:
a.
\(A\ge\sqrt{x-4+5-x}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)
\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)
b.
\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)
\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)
\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)
\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)
a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)
=>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)
=>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)
=>A\(\ge\)1
Dấu '=' xảy ra <=> x=4 hoặc x=5
Vậy,Min A=1 <=>x=4 hoặc x=5
Còn câu b tương tự nhé
ĐKXĐ:
\(x-1\ne0\text{ và }x\ge0\)
\(x\ne1\text{ và }x\ge0\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\left(\frac{2}{x^2-2x+1}\right)\)
\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\left(\frac{2}{\left(x-1\right)^2}\right)\)
\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\frac{2}{\left(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right)^2}\right)\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)
Để tìm Max N, ta có thể tìm Min của \(\frac{1}{N}(ĐK: x>0)\)
Theo đó, ta có: \(\frac{1}{N}=\frac{2x-4\sqrt{x}+3}{x}=2-\frac{4}{\sqrt{x}}+\frac{3}{x}=(\sqrt{\frac{3}{x}})^2-2.\sqrt{\frac{3}{x}}.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{2}{3}=(\sqrt{\frac{3}{x}}-\frac{2}{\sqrt{3}})^2+\frac{2}{3} \geq \frac{2}{3} \forall x \)
Vậy \(\frac{1}{N} \geq \frac{2}{3} \Rightarrow N \leq \frac{3}{2}\)
Dấu "=" xảy ra <=> \(\sqrt{\frac{3}{x}}-\frac{2}{\sqrt{3}}=0 \iff x=\frac{9}{4}(TMĐKXĐ)\)
Vậy \(MaxN=\frac{3}{2} \iff x= \frac{9}{4}\)
Chúc bạn học tốt!