giải pt sau:
\(\frac{x}{x-1}\)=\(\frac{x-1}{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
\(\frac{x+2}{x-2}\)-\(\frac{1}{x}\)=\(\frac{2}{x^2-2x}\)
\(\frac{x+2}{x-2}\)-\(\frac{1}{x}\)=\(\frac{2}{x\left(x-2\right)}\) \(\frac{\left(x+2\right)x}{\left(x-2\right)x}\)-\(\frac{x-2}{x\left(x-2\right)}\)=\(\frac{2}{x\left(x-2\right)}\) x(x+2)-x+2=2 x2+2x-x+2=2 x2+2x-x=2-2 x2+x=0 x(x+1)=0 x=0 hoặc x+1=0 x=0 hoặc x=-1\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\left(x\ne0;x\ne2\right)\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x-x+2-2=0\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(kot/m\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)
Vậy pt có nghiệm x =-1
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x};x\ne2;x\ne0\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x^2-2x}=0\)
\(\Leftrightarrow\frac{x+2}{x-2}-\frac{1}{x}-\frac{2}{x\times\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\times\left(x+2\right)-\left(x-2\right)-2}{x\times\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\times\left(x+2\right)-x+2-2}{x\times\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x^2+x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{x\left(x-2\right)}=0\)
\(\Leftrightarrow\frac{x+1}{x-2}=0\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
\(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\) (1)
đkxđ: \(x\ne\pm2\)
(1)\(\Leftrightarrow\frac{\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{-5\left(x+2\right)+12+x}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x-2=-5\left(x+2\right)+12+x\)
\(\Leftrightarrow5x=4\)
\(\Leftrightarrow x=\frac{5}{4}\)(thỏa mãn đkxđ)
Bài 1:
a, \(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+x^2}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{1+x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\) x - 1 + 2(x + 1) = 1 + x2
\(\Leftrightarrow\) x - 1 + 2x + 2 - 1 - x2 = 0
\(\Leftrightarrow\) -x2 + 3x = 0
\(\Leftrightarrow\) x(3 - x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=3\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy S = {0; 3}
b, \(\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{8}{x^2-4}\) (ĐKXĐ: x \(\ne\) \(\pm\) 2)
\(\Leftrightarrow\) \(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) (x - 2)2 - x(x + 2) = 8
\(\Leftrightarrow\) (x - 2)2 - x(x + 2) - 8 = 0
\(\Leftrightarrow\) x2 - 4x + 4 - x2 - 2x - 8 = 0
\(\Leftrightarrow\) -6x - 4 = 0
\(\Leftrightarrow\) x = \(\frac{-2}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-2}{3}\)}
c, \(\frac{1}{x}\) + \(\frac{2}{x-3}\) = \(\frac{1-5x}{x^2-3x}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 3)
\(\Leftrightarrow\) \(\frac{x-3}{x\left(x-3\right)}+\frac{2x}{x\left(x-3\right)}=\frac{1-5x}{x\left(x-3\right)}\)
\(\Rightarrow\) x - 3 + 2x = 1 - 5x
\(\Leftrightarrow\) 3x - 3 = 1 - 5x
\(\Leftrightarrow\) 3x + 5x = 1 + 3
\(\Leftrightarrow\) 8x = 4
\(\Leftrightarrow\) x = \(\frac{1}{2}\) (TMĐKXĐ)
Vậy S = {\(\frac{1}{2}\)}
Bài 2:
a, \(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}=\frac{-5}{x-2}+\frac{12+x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\) \(\frac{x-2}{\left(x+2\right)\left(x-2\right)}=\frac{-5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12+x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) x - 2 = -5(x + 2) + 12 + x
\(\Leftrightarrow\) x - 2 = -5x - 10 + 12 + x
\(\Leftrightarrow\) x - 2 = -4x + 2
\(\Leftrightarrow\) x + 4x = 2 + 2
\(\Leftrightarrow\) 5x = 4
\(\Leftrightarrow\) x = \(\frac{4}{5}\)
Vậy S = {\(\frac{4}{5}\)}
Chúc bn học tốt!! (Phần b hình như không có gì thì phải)
\(\Leftrightarrow\frac{x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}=\frac{\left(x-1\right)^2}{\left(x+2\right)\left(x-1\right)}\)\(\Rightarrow x\left(x+2\right)=\left(x-1\right)^2\)
\(\Leftrightarrow x^2+2x=x^2-2x+1\)
\(\Leftrightarrow4x-1=0\)\(\Leftrightarrow x=\frac{1}{4}\)
\(\frac{x}{x-1}=\frac{x-1}{x+2}\)
<=> x(x + 2) = (x - 1)2
<=> x^2 + 2x = x^2 - 2x + 1
<=> x^2 + 2x - x^2 + 2x - 1 = 0
<=> 4x - 1 = 0
<=> 4x = 1
<=> x = 1/4