Cho ∆ABC nhọn, kẻ hai đường cao BE, CF cắt nhau tại H. Kẻ HD vuông góc với BC (H ∈
BC).
a) Chứng minh tứ giác AEHF, BCEF nội tiếp
b) HB.HE = HC.HF
c) DH là phân giác của EDF ̂
d) Gọi O là trung điểm của BC, chứng minh EOF ̂ = EDF ̂ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BFC=góc BEC=90 độ
=>BCEF nội tiếp
góc AEH+góc AFH=180 dộ
=>AEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
=>BK//CH
góc ACK=1/2*sđ cung AK=90 độ
=>CK//BH
=>BHCK là hình bình hành
=>H đối xứng K qua M
a) Xét tứ giác AEHF có
\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Câu 8:
a) Xét tứ giác BFEC có
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
tứ giác BFEC có hai góc kề nhau cùng nhìn đoạn BC dưới một góc vuông : BFCˆ=BECˆ(=90)BFC^=BEC^(=90) ==> Tức giác BFEC là tứ giác nội tiếp
==> 4 điểm B,E,F,C cùng thuộc một đường tròn.
a) Ta có: \(\widehat{BFC}=90^0\)(\(CF\perp AB\))
nên F nằm trên đường tròn đường kính BC(Định lí)(1)
Ta có: \(\widehat{BEC}=90^0\left(BE\perp AC\right)\)
nên E nằm trên đường tròn đường kính BC(Định lí)(2)
Từ (1) và (2) suy ra E và F cùng nằm trên đường tròn đường kính BC
mà B,C cùng nằm trên đường tròn đường kính BC
nên E,F,B,C cùng thuộc đường tròn đường kính BC
hay BFEC là tứ giác nội tiếp(đpcm)
a: Xét tứ giác AEHF có
\(\widehat{AEH}+\widehat{AFH}=180^0\)
Do đó: AEHF là tứ giác nội tiép
b: Xét tứ giác ABDE có
\(\widehat{AEB}=\widehat{ADB}=90^0\)
Do đó:ABDE là tứ giác nội tiếp
Trả lời (xin lỗi-mk chỉ làm đc câu a)
a) Có góc BFC = góc BEC = 90 độ. ( Vì BE, CF là đường cao của tam giác ABC )
Suy ra F và E thuộc đường tròn đường kính BC.
Hay tứ giác BFEC nội tiếp.
~Học tốt!~
Cảm ơn bạn