Giải bất phương trình sau:
\(\frac{x^2-5x+6}{x^2+5x+6}\ge\frac{x+1}{x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)
\(\Leftrightarrow5x-10-15x\le9+10x+10\)
\(\Leftrightarrow-20x\le29\)
\(\Leftrightarrow x\ge-1,45\)
Vậy ...........
\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)
\(\Leftrightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\)
\(\Leftrightarrow x=3\)
Vậy ..............
\(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)
\(\Leftrightarrow5x-10-15x-9-10x-10\le0\)
\(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)
\(\Leftrightarrow x\ge-\frac{29}{20}\)
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
\(\Leftrightarrow\frac{x+1}{x}-\frac{x^2-5x+6}{x^2+5x+6}\le0\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x^2+5x+6\right)-x\left(x^2-5x+6\right)}{x\left(x+2\right)\left(x+3\right)}\le0\)
\(\Leftrightarrow\frac{11x^2+5x+6}{x\left(x+2\right)\left(x+3\right)}\le0\)
\(\Leftrightarrow x\left(x+2\right)\left(x+3\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}x< -3\\-2< x< 0\end{matrix}\right.\)