K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

*Hệ phương trình có một nghiệm duy nhất thì \(1-m \ne0 \Rightarrow m\ne1\) khi đó \(\left\{ \begin{array}{l} x = \dfrac{{3 + 2m}}{{1 - m}}\\ y = 3 - \dfrac{{3 + 2m}}{{1 - m}} = \dfrac{{ - 5m}}{{1 - m}} \end{array} \right.\)

*Hệ phương trình vô nghiệm \(\Leftrightarrow1-m=0\Leftrightarrow m=1\)

*Hệ phương trình vô số nghiệm \(\Leftrightarrow \left\{ \begin{array}{l} 1 - m = 0\\ 3 + 2m = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m = 1\\ m = - \dfrac{3}{2} \end{array} \right.\) (vô lí)

\(\Rightarrow\) Không tìm được giá trị $m$ thỏa mãn để hệ phương trình có vô số nghiệm.

31 tháng 3 2020

@Nguyễn Ngọc Lộc

@Phạm Lan Hương

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)

=>\(m^2\ne1\)

=>\(m\notin\left\{1;-1\right\}\)

Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)

Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)

=>m<-1

Để hệ có nghiệm duy nhất thì \(\dfrac{m}{2m}\ne\dfrac{1}{3}\)

=>\(\dfrac{1}{2}\ne\dfrac{1}{3}\)(luôn đúng)

\(\left\{{}\begin{matrix}mx+y=5\\2mx+3y=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2mx+2y=10\\2mx+3y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-y=4\\mx+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\mx=5-y=5-\left(-4\right)=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-4\\x=\dfrac{9}{m}\end{matrix}\right.\)

\(\left(2m-1\right)\cdot x+\left(m+1\right)\cdot y=m\)

=>\(\dfrac{9}{m}\left(2m-1\right)+\left(m+1\right)\cdot\left(-4\right)=m\)

=>\(\dfrac{9\left(2m-1\right)}{m}=m+4m+4=5m+4\)

=>m(5m+4)=18m-9

=>\(5m^2-14m+9=0\)

=>(m-1)(5m-9)=0

=>\(\left[{}\begin{matrix}m=1\\m=\dfrac{9}{5}\end{matrix}\right.\)

23 tháng 2 2021

\(\left\{{}\begin{matrix}mx+y=2m\\x+my=m+1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=2m-mx\\x+m\left(2m-mx\right)=m+1\left(1\right)\end{matrix}\right.\)

(1) ⇔x+2m2-m2x=m+1

⇔x(1-m2)=m+1-2m2

TH1: 1-m2=0

⇔m=\(\pm\)1

-Thay m= 1 vào (2) ta có: 0x =0 (luôn đúng)

⇒m=1(chọn)

-Thay m=-1 và (2) ta có: 0x=-2 (vô lí)

⇒m=-1(loại)

TH2: 1-m2 ≠ 0

⇔m ≠ \(\pm\) 1

⇒HPT có nghiệm duy nhất: 

x= \(\dfrac{-2m^2+m+1}{1-m^2}\)

y= \(2m-m.\dfrac{-2m^2+m+1}{1-m^2}\)

⇔y= \(2m+\dfrac{-2m^3-m^2-m}{1-m^2}\)

 

9 tháng 5 2021

- Không có đề à bạn

a: Khi m=2 thì hệ sẽ là;

2x-y=4 và x-2y=3

=>x=5/3 và y=-2/3

b:  mx-y=2m và x-my=m+1

=>x=my+m+1 và m(my+m+1)-y=2m

=>m^2y+m^2+m-y-2m=0

=>y(m^2-1)=-m^2+m

Để phương trình có nghiệm duy nhất thì m^2-1<>0

=>m<>1; m<>-1

=>y=(-m^2+m)/(m^2-1)=(-m)/m+1

x=my+m+1

\(=\dfrac{-m^2+m^2+2m+1}{m+1}=\dfrac{2m+1}{m+1}\)

x^2-y^2=5/2

=>\(\left(\dfrac{2m+1}{m+1}\right)^2-\left(-\dfrac{m}{m+1}\right)^2=\dfrac{5}{2}\)

=>\(\dfrac{4m^2+4m+1-m^2}{\left(m+1\right)^2}=\dfrac{5}{2}\)

=>2(3m^2+4m+1)=5(m^2+2m+1)

=>6m^2+8m+2-5m^2-10m-5=0

=>m^2-2m-3=0

=>(m-3)(m+1)=0

=>m=3 

1 tháng 8 2018

mk lm câu khó nhất trong các câu này , rồi bn làm tương tự với các câu còn lại nha .

d) ta có : \(\left\{{}\begin{matrix}2x-y=3+2m\\mx+y=\left(m+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x-3-2m=m^2+2m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\mx+2x=m^2+4m+4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\\left(m+2\right)x=\left(m+2\right)^2\end{matrix}\right.\).....(1)

th1: \(m+2=0\Leftrightarrow m=-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\0x=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\in R\\y=2x+1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có vô số nghiệm

th2: \(m+2\ne0\Leftrightarrow m\ne-2\)

khi đó ta có : (1) \(\Leftrightarrow\left\{{}\begin{matrix}y=2x-3-2m\\x=m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

\(\Rightarrow\) phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

vậy khi +) \(m=-2\) phương trình có vô số nghiệm

+) khi \(m\ne-2\) phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=m+2\\y=1\end{matrix}\right.\)

25 tháng 8 2018

Bạn làm phần c hộ mình với

20 tháng 3 2022

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m\left(mx-2\right)=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x+m^2x-2m=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=mx-2\\x\left(m^2+1\right)=3+2m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=m.\dfrac{3+2m}{m^2+1}-2\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m+2m^2-2m^2-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-2}{m^2+1}\\x=\dfrac{3+2m}{m^2+1}\end{matrix}\right.\)

\(x+y=0\\ \Leftrightarrow\dfrac{3m-2}{m^2+1}+\dfrac{3+2m}{m^2+1}=0\\ \Leftrightarrow\dfrac{3m-2+3+2m}{m^2+1}=0\\ \Rightarrow4m+1=0\\ \Leftrightarrow m=-\dfrac{1}{4}\)

 

20 tháng 3 2022

x+y=0 \(\Rightarrow\) y=-x.

\(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}mx+x=2\\x-mx=3\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x\left(m+1\right)=2\\x\left(1-m\right)=3\end{matrix}\right.\) \(\Rightarrow\) \(\dfrac{2}{m+1}=\dfrac{3}{1-m}\) \(\Rightarrow\) m=-1/5 (nhận).