K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

bạn tham khảo câu hỏi tương tự nhé!

14 tháng 12 2015

Câu hỏi tương tự      

17 tháng 12 2015

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3

 


 

3 tháng 10 2015

1) tính :

a) 5.17=85

b) (-15).(-6)=90

2) cho a là một số nguyên dương . hỏi b là số nguyên dương hay số nguyên âm nếu :

a) tích a.b là một số nguyên dương =>b là số nguyên dương

b) tích a.b là một số nguyên âm => b là số nguyên âm

20 tháng 1 2016

1 S

2 Đ

3 Đ

4 Đ

5 S

6 S

20 tháng 1 2016
  1. Sai
  2. Đúng
  3. Đúng
  4. ....... Viết đê thiếu
  5. Sai
  6. Sai
24 tháng 12 2017

a) a là một số nguyên dương. Tích a . b là một số nguyên dương

Suy ra b là một số nguyên dương

b) a là một số nguyên dương. Tích a . b là một số nguyên âm

Suy ra b là một số nguyên âm

17 tháng 2 2020

Ta có: \(b+2019=\left(b+3\right)+2016\)(*)

Mà \(2016⋮6\)kết hợp với \(\left(^∗\right)⋮6\Rightarrow b+3⋮6\)

Lại có: a + 1 chia hết cho 6 nên \(\left(a+1\right)+\left(b+3\right)⋮6\)

\(\Rightarrow a+b+4⋮6\)

\(\Rightarrow a+b+4^a+\left(4-4^a\right)⋮6\)(1)

Xét a + 1 chia hết cho 6 nên a chia 6 dư 5.Đặt a = 6k + 5

\(\Rightarrow4-4^a=4-4^{6k+5}=4\left(1-4^{6k+4}\right)\)

Ta có:\(4\left(1-4^{6k+4}\right)⋮2\)

Mặt khác: \(1\text{≡}4\left(mod3\right)\)và \(4^{6k+4}\text{≡}4\left(mod3\right)\)

\(\Rightarrow\left(1-4^{6k+4}\right)⋮3\)

Lúc đó \(4\left(1-4^{6k+4}\right)⋮6\)(vì (2,3)=1) (2)

Từ (1) và (2) suy ra \(a+b+4^a⋮6\left(đpcm\right)\)

28 tháng 8 2016

Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.

Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.

4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.

Bạn xem lại đề.

20 tháng 9 2016

Sai đề rồi