Tìm các cặp số nguyên x,y thõa mãn: x^2+x+3=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+y}{x^2-xy+y^2}=\frac{3}{7}\)
\(\Leftrightarrow3x^2-3xy+3y^2=7x+7y\)
\(\Leftrightarrow3x^2+\left(-3y-7\right)x+3y^2-7y=0\)
Để phương trình theo nghiệm x có nghiệm thì:
\(\Delta=\left(-3y-7\right)^2-4.3.\left(3y^2-7y\right)\ge0\)
\(\Leftrightarrow0\le y\le5\)
Thế lần lược các giá trị y cái nào làm cho x nguyên thì nhận.
Vì x;y nguyên nên (2x-3)2 và |y-2| đều là số nguyên
Mà \(\hept{\begin{cases}\left(2x-3\right)^2\ge0\\\left|y-2\right|\ge0\end{cases}}\) nên (2x-3)2 và |y-2| là các số nguyên không âm
TH1: (2x-3)2=0 và |y-2|=1
\(\left(2x-3\right)^2=0\Leftrightarrow2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)(loại)
Ta không xét đến |y-2|=1 nữa!
TH2: (2x-3)2=1 và |y-2|=0
- \(\left(2x-3\right)^2=1\Rightarrow\orbr{\begin{cases}2x-3=-1\\2x-3=1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-2\\2x=4\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
- \(\left|y-2\right|=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)
Vậy có 2 cặp x;y thỏa mãn là .........................
\(!y-2!\le1\Rightarrow1\le y\le3\Rightarrow co.the=\left\{1,2,3\right\}\)
\(!2x-3!\le1\Rightarrow1\le x\le2=>x.cothe.=\left\{1,2\right\}\)
Với x=1,2=>có y=2
với 1,3 không có x thỏa mãn
KL:
(xy)=(1,2); (2,2)
x - y + 2xy = 3
2(x - y + 2xy) = 6
2x - 2y + 4xy = 6
2x - 2y(1 + 2x) = 6
1 + 2x - 2y(1 + 2x) = 7
(2x + 1)(1 - 2y) = 7
=> 2x + 1 và 1 - 2y thuộc ước của 7
=> Ư(7) = { - 7; - 1; 1; 7 }
2x + 1 | - 7 | - 1 | 1 | 7 |
1 - 2y | - 1 | - 7 | 7 | 1 |
x | - 4 | - 1 | 0 | 3 |
y | 1 | 4 | - 3 | 0 |
Vậy ( x;y ) = { ( -4;-1 ); ( -1;4 ); (0;-3); (3;0) }
Biến đổi biểu thức tương đương, ta có :
Lại có : x,y nguyên dương.
và x phải là số lẽ.
Từ đó đặt (k nguyên dương)
Ta có biểu thức tương đương :
Để ý rằng: y là 1 số nguyên tố nên sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là {1 ; y ; y^2}
Từ (*) dễ thấy
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2
copy bài như thế này mà tự xưng là chiến thắng sao ko bít nhục à VICTOR_Nobita Kun
vì y2 >0 => 3- I2x-3I >=0
=> I2x-3I<=3
=>\(\orbr{\begin{cases}2x-3< =3\\2x-3>=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x< =3\\x>=0\end{cases}}\)
nếu x=0 => y=0 (TMĐK)
nếu x=1 =>y=\(\sqrt{2}\)(KTMĐK)
nếu x=2=>y=\(\sqrt{2}\)(KTMĐK)
nếu x=3=>y=0 (TMĐK)
v các cặp số nguyên TM pt đã cho là (x,y): (0,0);(3,0)
please
Toán lp mấy mà khó zậy bn?? xl mk hông bt lm