Viết 6 số tự nhiên vào 6 mặt của một con súc sắc. Chứng minh rằng khi ta gieo súc sắc thì trong 5 mặt có thể nhìn thấy bao giờ cũng có 1 hay nhiều mặt có tổng chia hết cho 15( Giải theo nguyên lý Dirichlet)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi các số trên 5 mặt là: a1 ; a2 ; a3 ; a4 ; a5
Xét 5 tổng : s1 = a1
s2 = a1 + a2
s3 = a1 + a2 + a3
s4 = a1 + a2 + a3 + a4
s5 = a1 + a2 + a3 + a4 + a5
- Nếu cố một trong 5 tổng đó chia hết cho 5 thì bài toán đã giải xong
- Nếu không có tổng nào chia hết cho 5 thì tồn tại hai tổng có cùng số dư khi chia cho 5 ( vì 5 tổng mà chỉ có 4 số dư khác 0 : 1 ; 2 ; 3 ; 4 ) . Hiệu của 2 tổng này chia hết cho 5 . Gọi hai tổng đó là : sm và sn ( 1<n<m<5 )
Thì => sm - sn chia hết cho 5
Hay (a1+a2+...+am) - (a1+a2+...+an) = an+1 + an+2 +....+ am chia hết cho 5 (đpcm)
Bài này dễ ma
6 số tư nhiên 1,2,3,4,5,6 thi có sộ chia hết rồi còn các măt con lại thì(kiểu gi trong 6 mặt cung co 1 số chia hết cho 5)
1 dư 1, 2 dư 2, 3 dư 3 ,4 dư 4 , 6 dư 1
Trong trương hơp xấu nhất là ko có số 5 thì vẫn còn có 2+3
1+4
Hoặc ko có 5 thì chia hết rồi.Nói trước nếu bài này ban chép lại thi co thẻ thiếu đó .Toi nghi là phải 6 số tự nhiên liên tiếp, nhớ thanks
*Sửa lại đề 1 chút:.....có tổng chia hết cho 5*
Gọi các số trong 5 mặt là a1;a2;a3;a4;a5
Xét 5 tổng S1=a1;S2=a1+a2;S3=a1+a2+a3;S4=a1+a2+a3+a4;S5=a1+a2+a3+a4+a5
Nếu có 1 trong 5 tổng chia hết cho 5 thì bài toán giải xong
Nếu không có tổng nào chia hết cho 5 thì tồn tại 2 tổng cùng số dư khi chia hết cho 5. Hiệu của 2 tổng này chia hết cho 5. Gọi 2 tổng đó là Sm và Sn \(\left(1\le n< m\le5\right)\)
Thì suy ra Sm-Sn chia hết cho 5
Hay (a1+a2+a3+....+an)-(a1+a2+a3+....+am) =an+1+an+2+.....+am chia hết cho 5