\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x1\frac{1}{5}\)Tính giá trị của biểu thức :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow2+\frac{x+4}{2000}+\frac{x+3}{2001}=2+\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2001}+1\right)\)
\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
Suy ra x+2004=0
\(\Leftrightarrow x=-2004\)
\(x\)là dấu nhân hả bạn? Nếu vậy thì mk làm cho nhé
\(A=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot....\cdot\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot.......\cdot\frac{17}{18}\cdot\frac{18}{19}\cdot\frac{19}{20}=\frac{1}{20}\)
Vậy \(A=\frac{1}{20}\)
\(B=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot........\cdot1\frac{1}{2005}\cdot1\frac{1}{2006}\cdot1\frac{1}{2007}\)
\(B=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot......\cdot\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot\frac{2008}{2007}=\frac{2008}{2}=1004\)
Vậy \(B=1004\)
DẤU CHẤM LÀ DẤU NHÂN
a,
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{19}{20}=\frac{1}{20}\)
b, \(1\frac{1}{2}.1\frac{1}{3}....1\frac{1}{2017}=\frac{3}{2}.\frac{4}{3}....\frac{2018}{2017}=\frac{2018}{2}=1009\)
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}.....1\frac{1}{2015}\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}........\frac{2016}{2015}\)
\(=\frac{3.4.5.....2016}{2.3.4....2015}=\frac{2016}{2}=1008\)
\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2016}{2015}\)
\(A=\frac{2016}{2}=1008\)
Xong nhé bạn!
\(2x^2-3x-24=0\)
\(\Delta=9-4.\left(-24\right).2=201>0\) => pt có 2 n0 pb
Theo Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{3}{2}\\x_1x_2=-12\end{matrix}\right.\)
\(\Rightarrow M=\frac{x_1+x_2}{x_1x_2}=\frac{\frac{3}{2}}{-12}=-\frac{1}{8}\)
Nếu đề bài là
Tính P=\(\frac{x_1^2+x_1-1}{x_1}\)-\(\frac{x_2^2+x_2-1}{x_2}\)
Thì lời giải như sau:
Theo định lý Viete, ta có:
x1.x2=-1
Khi đó P=\(\frac{x_1^2+x_1+x_1.x_2}{x_1}\)-\(\frac{x_2^2+x_2+x_1.x_2}{x_2}\)
Do x1 và x2 không thể bằng không nên ta chia tử mẫu của mỗi hạng tử cho x1,x2
Khi đó P=x1+x2+1-(x2+x1+1)=0
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
\(1\frac{1}{2}\times1\frac{1}{3}\times1\frac{1}{4}\times1\frac{1}{5}\)
\(=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\frac{6}{5}\)
\(=\frac{6}{2}=3\)