Tìm giá trị của đa thức biết x - y = 3
x^3 - y^3 - 4xy + y^2 - 35 - 3xy(x -y) + 2x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 2x2 - 3x + 3 - y2 + 2y + 4xy
Q = 2y2 - 2x2 - 3x + 6 +2y - 3xy
P - Q = (2x2 - 3x + 3 - y2 + 2y + 4xy) - (2y2 - 2x2 - 3x + 6 +2y - 3xy)
= 2x2 - 3x + 3 - y2 + 2y + 4xy - 2y2 + 2x2 + 3x - 6 - 2y + 3xy
= ( 2x2 + 2 x2 ) + ( - 3x + 3x ) + ( -y2 - 2y2 ) + ( 2y - 2y ) + ( 4xy + 3xy ) + ( 3 - 6 )
= 4x2 - 3y2 + 7xy - 3
b, Tại x = 1 và y = 2:
=> P = 2.12 - 3.1 + 3 - 22 + 2.2 + 4.1.2
= 2.1 - 3 + 3 - 4 + 4 + 8
= 2 - 3 + 3 - 4 + 4 + 8
= 10
A P-Q= (2x^2 -3x + 3 - y^2 +2y + 4xy) - (2y^2 - 2x^2 - 3x + 6 + 2y - 3xy)
P-Q= 2x^2 -3x+3 -y^2 + 2y+4xy-2y^2+2x^2+3x-6-2y+3xy
P--Q=(2x^2-2x^2)-(3x-3x)-(y^2+2y^2)+(2y-2y)+(4xy+3xy)+(3-6)
P-Q=-3y^2+7xy-3
b thay x=-1 và y=2 vào đa thức trên ta có
P-Q=-3x2^2+7x-1x2-3
P-Q=-3x4+-14-3
P-Q=12+-14-3
P-Q=-5
vậy giá trị của đa thức trên tại x=-1 và y=2
chúc bạn học tốt
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
\(A=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x^3+y^3\right)-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(\left(x+y\right)^2-2xy\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(x+y\right)^2+4xy+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(5\right)^3-3xy\left(5\right)-2\left(5\right)^2+4xy+3xy\left(5\right)-4xy+3\left(5\right)+10\)
\(A=125-15xy-50+4xy+15xy-4xy+15+10\)
\(A=100\)
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
a: C=A-B
\(=5x^3+y^3-3x^2y+4xy^2-4x^3+6x^2y-xy^2\)
\(=x^3+3x^2y+3xy^2+y^3\)
D=A+B
\(=5x^3+y^3-3x^2y+4xy^2+4x^3-6x^2y+xy^2\)
\(=9x^3-9x^2y+5xy^2+y^3\)
bậc của C là 3
bậc của D là 3
b: Thay x=0 và y=-2 vào D, ta được:
\(D=9\cdot0^3-9\cdot0^2\left(-2\right)+5\cdot0\cdot\left(-2\right)^2+\left(-2\right)^3\)
\(=0-0+0-8=-8\)
c: Thay x=-1 và y=-1 vào C, ta được:
\(C=\left(-1\right)^3+3\cdot\left(-1\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)\cdot\left(-1\right)^2+\left(-1\right)^3\)
=-8
Thay \(x = - 2\); \(y = \dfrac{1}{3}\) vào đa thức \(A\) ta có:
\(\begin{array}{l}A = 5.{\left( { - 2} \right)^2} - 4.\left( { - 2} \right).\dfrac{1}{3} + 2.\left( { - 2} \right) - 4.{\left( { - 2} \right)^2} + \left( { - 2} \right).\dfrac{1}{3}\\A = 5.4 - \dfrac{{ - 8}}{3} + \left( { - 4} \right) - 4.4 + \dfrac{{ - 2}}{3}\\A = 20 + \dfrac{8}{3} - 4 - 16 + \dfrac{{ - 2}}{3}\\A = 2\end{array}\)
Thay \(x = - 2\); \(y = \dfrac{1}{3}\) vào đa thức \(B\) ta có:
\(\begin{array}{l}B = {\left( { - 2} \right)^2} - 3.\left( { - 2} \right).\dfrac{1}{3} + 2.\left( { - 2} \right)\\B = 4 - \left( { - 2} \right) + \left( { - 4} \right)\\B = 4 + 2 - 4\\B = 2\end{array}\)
Vậy \(A = B\)