K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

=>ΔAKB vuông tại K

Xét tứ giác BKHI có

góc BKH+góc BIH=180 độ

=>BKHI là tứ giác nội tiếp

b: Xét ΔAHI vuông tại I và ΔABK vuông tại K có

góc HAI chung

=>ΔAHI đồng dạng với ΔABK

=>AH/AB=AI/AK

=>AH*AK=AI*AB=1/4*R^2

10 tháng 3 2017

a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 180 0 )

b, Chứng minh AH.AK = AI.AB = 1 2 R.2R = R 2  => ĐPCM

c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD

d, Tam giác OCA đều =>  A B C ^ = 30 0 ; M C D ^ = 60 0

Tính được CD = 2CI =  2 . 25 2 = 25cm; CM =  25 2 cm, MD =  25 3 2 cm, Sxq = 2.π.CM.MD =  625 3 2 πcm 2

14 tháng 9 2019

a,  H I B ^ = H K B ^ = 180 0

=> Tứ giác BIHK nội tiếp

b, Chứng minh được: DAHI ~ DABK (g.g)

=> AH.AK = AI.AB = R 2 (không đổi)

c, Chứng minh được MCND là hình chữ nhật từ đó => Đpcm

23 tháng 1 2021

Ta có: ^AKB là góc nội tiếp chắn nửa đường tròn (O)

=> ^AKB = 90  (t/c góc nội tiếp ).

Xét tứ giác HKBI ta có:

     ^HKI=900          (do  CD⊥AB tại I)

=> ^HKI + ^ HIB=180.

=> Tứ giác BKHI là tứ giác nội tiếp (dhnb).

23 tháng 1 2021

b) Xét TGiac AHI và Tgiac AKB có:

    ^AKB = ^AHI ( do cùng =90 độ)

    ^A chung

=> tam giác AHI đồng dạng với AKB (g - g)

=> AH/AB = AI/AK (cặp cạnh tg ứg tỉ lệ)

=> AH.AK = AI.AB

Mà AI; AB cố định

=> AH.AK không phụ thuộc vào vị trí điểm K (đpcm)

21 tháng 10 2019

a, HS tự làm

b, Ta có DAHI đồng dạng với DABK (g.g)

=>AH.AK = AI.AB =  R 2

c, Chứng minh được I là trung điểm của CD

Từ MCND là hình chữ nhật suy ra MN và CD cắt nhau tại trung điểm của mỗi đường => ĐPCM

d, Chứng minh được  I O C ^ = 60 0  => ∆ACO đều nên  A C D ^ = 30 0

Chứng minh được DCBD đều nên CD = CB => CD = 25cm

Áp dụng tỉ số lượng giác trong ∆CDM ( M ^ = 90 0 ) ta tính được: MD = 12,5cm và MC = 21,7 cm

Từ đó tính được diện tích xung quanh hình trụ tạo thành khi cho tứ giác MCND quay quanh MD là:  S x q = 2 r πh = 542 , 5 πcm 2